6,452 research outputs found
FMRI Effective Connectivity and TMS Chronometry: Complementary Accounts of Causality in the Visuospatial Judgment Network
BACKGROUND: While traditionally quite distinct, functional neuroimaging (e.g. functional magnetic resonance imaging: fMRI) and functional interference techniques (e.g. transcranial magnetic stimulation: TMS) increasingly address similar questions of functional brain organization, including connectivity, interactions, and causality in the brain. Time-resolved TMS over multiple brain network nodes can elucidate the relative timings of functional relevance for behavior ("TMS chronometry"), while fMRI functional or effective connectivity (fMRI EC) can map task-specific interactions between brain regions based on the interrelation of measured signals. The current study empirically assessed the relation between these different methods. METHODOLOGY/PRINCIPAL FINDINGS: One group of 15 participants took part in two experiments: one fMRI EC study, and one TMS chronometry study, both of which used an established cognitive paradigm involving one visuospatial judgment task and one color judgment control task. Granger causality mapping (GCM), a data-driven variant of fMRI EC analysis, revealed a frontal-to-parietal flow of information, from inferior/middle frontal gyrus (MFG) to posterior parietal cortex (PPC). FMRI EC-guided Neuronavigated TMS had behavioral effects when applied to both PPC and to MFG, but the temporal pattern of these effects was similar for both stimulation sites. At first glance, this would seem in contradiction to the fMRI EC results. However, we discuss how TMS chronometry and fMRI EC are conceptually different and show how they can be complementary and mutually constraining, rather than contradictory, on the basis of our data. CONCLUSIONS/SIGNIFICANCE: The findings that fMRI EC could successfully localize functionally relevant TMS target regions on the single subject level, and conversely, that TMS confirmed an fMRI EC identified functional network to be behaviorally relevant, have important methodological and theoretical implications. Our results, in combination with data from earlier studies by our group (Sack et al., 2007, Cerebral Cortex), lead to informed speculations on complex brain mechanisms, and TMS disruption thereof, underlying visuospatial judgment. This first in-depth empirical and conceptual comparison of fMRI EC and TMS chronometry thereby shows the complementary insights offered by the two methods
Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies
By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water
The Incidence of Trilateral Retinoblastoma : A Systematic Review and Meta-Analysis
PURPOSE: To estimate the incidence of trilateral retinoblastoma in patients with retinoblastoma. " DESIGN: Systematic review and meta-analysis. METHODS: We searched Medline and Embase for scientific literature published between January 1966 and July 2015 that assessed trilateral retinoblastoma incidence. We used a random-effects model for the statistical analyses. " RESULTS: We included 23 retinoblastoma cohorts from 26 studies. For patients with bilateral retinoblastoma the unadjusted chance of developing trilateral retinoblastoma across all cohorts was 5.3% (95% confidence interval [CI]: 3.3%-7.7%); the chance of pineal trilateral retinoblastoma was 4.2% (95% CI: 2.6%-6.2%) and the chance of nonpineal trilateral retinoblastoma was 0.8% (95% CI: 0.4%-1.3%). In patients with hereditary retinoblastoma (all bilateral cases, and the unilateral cases with a family history or germline RB1 mutation) we found a trilateral retinoblastoma incidence of 4.1% (95% CI: 1.9%-7.1%) and a pineal trilateral retinoblastoma incidence of 3.7% (95% CI: 1.8%-6.2%). To reduce the risk of overestimation bias we restricted analysis to retinoblastoma cohorts with a minimum size of 100 patients, resulting in adjusted incidences of 3.8% (95% CI: 2.4%-5.4%), 2.9% (95% CI: 1.9%-4.2%), and 0.7% (95% CI: 0.3%-1.2%) for any, pineal, and nonpineal trilateral retinoblastoma, respectively, among patients with bilateral retinoblastoma. Among hereditary retinoblastoma we found an adjusted trilateral retinoblastoma incidence of 3.5% (95% CI: 1.2%-6.7%) and a pineal trilateral retinoblastoma incidence of 3.2% (95% CI: 1.4%-5.6%). CONCLUSION: The estimated incidence of trilateral retinoblastoma is lower than what is reported in previous literature, especially after exclusion of small cohorts that were subject to overestimation bias in this context. (C) 2015 by Elsevier Inc. All rights reserved.)Peer reviewe
Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function
Background. Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. Methods. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle-and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Results. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Conclusions. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies
Experimental determination of the quasi-particle decay length in a superconducting quantum well
We have investigated experimentally the electronic transport properties of a
two-dimensional electron gas (2DEG) present in an AlSb/InAs/AlSb quantum well,
where part of the toplayer has been replaced by a superconducting Nb strip,
with an energy gap . By measuring the lateral electronic transport
underneath the superconductor, and comparing the experimental results with a
model based on the Bogoliubov-de Gennes equation and the Landauer-B\"uttiker
formalism, we obtain a decay length for
electrons. This decay length corresponds to an interface transparency
between the Nb and InAs. Using this value, we infer an
energy gap in the excitation spectrum of the SQW of .Comment: Revtex, 3 PostScript figure
- …