20 research outputs found

    Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics

    Get PDF
    The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p &lt; 0.05, fold-change &gt; 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p &lt; 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.</p

    EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS: We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS: Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS: We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.</p

    Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3–Linked Sialic Acid Ligand Binding

    No full text
    Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs). This study explores the early signaling events in DCs upon binding of α2-3 sialic acid (α2-3sia) that are recognized by Immune inhibitory Sialic acid binding immunoglobulin type lectins. α2-3sias are commonly found on bacteria, e.g. Group B Streptococcus, but can also be expressed by tumor cells. We investigated whether α2-3sia conjugated to a dendrimeric core alters DC signaling properties. Through phosphoproteomic analysis, we found differential signaling profiles in DCs after α2-3sia binding alone or in combination with LPS/TLR4 co-stimulation. α2-3sia was able to modulate the TLR4 signaling cascade, resulting in 109 altered phosphoproteins. These phosphoproteins were annotated to seven biological processes, including the regulation of the IL-12 cytokine pathway. Secretion of IL-10, the inhibitory regulator of IL-12 production, by DCs was found upregulated after overnight stimulation with the α2-3sia dendrimer. Analysis of kinase activity revealed altered signatures in the JAK-STAT signaling pathway. PhosphoSTAT3 (Ser727) and phosphoSTAT5A (Ser780), involved in the regulation of the IL-12 pathway, were both downregulated. Flow cytometric quantification indeed revealed de- phosphorylation over time upon stimulation with α2-3sia, but no α2-6sia. Inhibition of both STAT3 and -5A in moDCs resulted in a similar cytokine secretion profile as α-3sia triggered DCs. Conclusively, this study revealed a specific alteration of the JAK-STAT pathway in DCs upon simultaneous α2-3sia and LPS stimulation, altering the IL10:IL-12 cytokine secretion profile associated with reduction of inflammation. Targeted control of the STAT phosphorylation status is therefore an interesting lead for the abrogation of immune escape that bacteria or tumors impose on the host

    Human testis phosphoproteome reveals kinases as potential targets in spermatogenesis and testicular cancer

    No full text
    Spermatogenesis is a complex cell differentiation process that includes marked genetic, cellular, functional and structural changes. It requires tight regulation, because disturbances in any of the spermatogenic processes would lead to fertility deficiencies as well as disorders in offspring. To increase our knowledge of signal transduction during sperm development, we carried out a large-scale identification of the phosphorylation events that occur in the human male gonad. Metal oxide affinity chromatography using TiO 2 combined with LC-MS/MS was conducted to profile the phosphoproteome of adult human testes with full spermatogenesis. A total of 8187 phosphopeptides derived from 2661 proteins were identified, resulting in the most complete report of human testicular phosphoproteins to date. Phosphorylation events were enriched in proteins functionally related to spermatogenesis, as well as to highly active processes in the male gonad, such as transcriptional and translational regulation, cytoskeleton organization, DNA packaging, cell cycle and apoptosis. Moreover, 174 phosphorylated kinases were identified. The most active human protein kinases in the testis were predicted both by the number of phosphopeptide spectra identified and the phosphorylation status of the kinase activation loop. The potential function of cyclin-dependent kinase 12 (CDK12) and p21-activated kinase 4 (PAK4) has been explored by in silico protein-protein interaction analysis, immunodetection in testicular tissue, and a functional assay in a human embryonal carcinoma cell line. The colocalization of CDK12 with Golgi markers suggests a potential crucial role of this protein kinase during sperm formation. PAK4 has been found expressed in human spermatogonia, and a role in embryonal carcinoma cell response to apoptosis has been observed. Together, our protein discovery analysis confirms that phosphoregulation by protein kinases is highly active in sperm differentiation and opens a window to detailed characterization and validation of potential targets for the development of drugs modulating male fertility and tumor behavior

    Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection

    No full text
    Mass spectrometry-based phosphoproteomics of cancer cell and tissue lysates provides insight in aberrantly activated signaling pathways and potential drug targets. For improved understanding of individual patient's tumor biology and to allow selection of tyrosine kinase inhibitors in individual patients, phosphoproteomics of small clinical samples should be feasible and reproducible. We aimed to scale down a pTyr-phosphopeptide enrichment protocol to biopsy-level protein input and assess reproducibility and applicability to tumor needle biopsies. To this end, phosphopeptide immunoprecipitation using anti-phosphotyrosine beads was performed using 10, 5 and 1 mg protein input from lysates of colorectal cancer (CRC) cell line HCT116. Multiple needle biopsies from 7 human CRC resection specimens were analyzed at the 1 mg-level. The total number of phosphopeptides captured and detected by LC-MS/MS ranged from 681 at 10 mg input to 471 at 1 mg HCT116 protein. ID-reproducibility ranged from 60.5% at 10 mg to 43.9% at 1 mg. Per 1 mg-level biopsy sample, > 200 phosphopeptides were identified with 57% ID-reproducibility between paired tumor biopsies. Unsupervised analysis clustered biopsies from individual patients together and revealed known and potential therapeutic targets. Significance This study demonstrates the feasibility of label-free pTyr-phosphoproteomics at the tumor biopsy level based on reproducible analyses using 1 mg of protein input. The considerable number of identified phosphopeptides at this level is attributed to an effective down-scaled immuno-affinity protocol as well as to the application of ID propagation in the data processing and analysis steps. Unsupervised cluster analysis reveals patient-specific profiles. Together, these findings pave the way for clinical trials in which pTyr-phosphoproteomics will be performed on pre- and on-treatment biopsies. Such studies will improve our understanding of individual tumor biology and may enable future pTyr-phosphoproteomics-based personalized medicine

    Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma

    No full text
    Summary: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases. By using integrative inferred kinase activity (INKA) scoring, we identify multiple (parallel) activated kinases that are subsequently matched to kinase inhibitors. Compared with high-dose single-drug treatments, INKA-tailored low-dose 3-drug combinations against multiple targets demonstrate superior efficacy against PDAC cell lines, organoid cultures, and patient-derived xenografts. Overall, this approach is particularly more effective against the aggressive mesenchymal PDAC model compared with the epithelial model in both preclinical settings and may contribute to improved treatment outcomes in PDAC patients

    Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies

    No full text
    Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy. Here, we describe a mass spectrometry-based global phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on 4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided design of personalized treatments

    Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed Glioblastoma

    No full text
    Purpose: Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. Patients and Methods: Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. Results: The median tumor sunitinib concentration of 1.9 mmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 mmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFRcentered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. Conclusions: Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment
    corecore