10 research outputs found
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Identifying epigenetic associations with cell type and gestational age in the neonatal immune system
Neonates have a uniquely structured immune system characterized by immunotolerance, an unprimed adaptive immune system, and a heavy reliance on innate immune responses. Although this prevents excessive hyperinflammatory responses during gestation and postnatal microbial colonization of the neonate, it also confers vulnerability to infection. This risk is heightened in those born preterm (prior to 37 weeks gestation), as development of their immune system is interrupted by early birth.
Throughout gestation, the predominant hematopoietic organ shifts in a defined temporal pattern. Each hematopoietic source produces different types of immune cells in different proportions, to accommodate the needs of the developing fetus. One of the greatest differences between these organs is the release of nucleated red blood cells (nRBCs) into circulation – ranging from the yolk sac, which exclusively releases primitive nRBCs, to the bone marrow, in which erythroid cells are enucleated before entering circulation. Although generally regarded as a consequence of high erythropoietic demand in the fetus, recent functional studies have indicated an immunosuppressive role for fetal nRBCs as well.
DNA methylation (DNAm) is the addition of a methyl group to a cytosine base, a modification which does not change the underlying genetic sequence. DNAm mediates hematopoietic lineage commitment and can be a useful marker for cell composition and immune function in blood. Using the Illumina Infinium HumanMethylation450 BeadChip microarray, this thesis establishes DNAm profiles for major cord blood hematopoietic cells in both term and preterm births. In-depth examination of DNAm in term nRBCs revealed that epigenetic marks in this enigmatic cell population are likely highly regulated. Comparisons between cord blood hematopoietic cells collected from term versus preterm births allowed for the identification of both cell-specific and systemic prematurity-associated differential methylation. These findings contribute to current understanding of the molecular mechanisms behind preterm birth and highlight candidate genes for follow-up gene expression or functional analysis of preterm hematopoietic cell populations, including CDC42EP1, CLIP2, FBXO31, the oncogene WWTR1, and tumour suppressor genes STK10 and RARRES3.Medicine, Faculty ofMedical Genetics, Department ofGraduat
Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns
Background:
Premature infants are highly vulnerable to infection. This is partly attributable to the preterm immune system, which differs from that of the term neonate in cell composition and function. Multiple studies have found differential DNA methylation (DNAm) between preterm and term infants’ cord blood; however, interpretation of these studies is limited by the confounding factor of blood cell composition. This study evaluates the epigenetic impact of preterm birth in isolated hematopoietic cell populations, reducing the concern of cell composition differences.
Methods:
Genome-wide DNAm was measured using the Illumina 450K array in T cells, monocytes, granulocytes, and nucleated red blood cells (nRBCs) isolated from cord blood of 5 term and 5 preterm (<31 weeks gestational age) newborns. DNAm of hematopoietic cells was compared globally across the 450K array and through site-specific linear modeling.
Results:
Nucleated red blood cells (nRBCs) showed the most extensive changes in DNAm, with 9258 differentially methylated (DM) sites (FDR 0.10) discovered between preterm and term infants compared to the <1000 prematurity-DM sites identified in white blood cell populations. The direction of DNAm change with gestational age at these prematurity-DM sites followed known patterns of hematopoietic differentiation, suggesting that term hematopoietic cell populations are more epigenetically mature than their preterm counterparts. Consistent shifts in DNAm between preterm and term cells were observed at 25 CpG sites, with many of these sites located in genes involved in growth and proliferation, hematopoietic lineage commitment, and the cytoskeleton. DNAm in preterm and term hematopoietic cells conformed to previously identified DNAm signatures of fetal liver and bone marrow, respectively.
Conclusions:
This study presents the first genome-wide mapping of epigenetic differences in hematopoietic cells across the late gestational period. DNAm differences in hematopoietic cells between term and <31 weeks were consistent with the hematopoietic origin of these cells during ontogeny, reflecting an important role of DNAm in their regulation. Due to the limited sample size and the high coincidence of prematurity and multiple births, the relationship between cause of preterm birth and DNAm could not be evaluated. These findings highlight gene regulatory mechanisms at both cell-specific and systemic levels that may be involved in fetal immune system maturation.Medicine, Faculty ofOther UBCMedical Genetics, Department ofPediatrics, Department ofReviewedFacult
Additional file 1: of Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells
Supplemental Methods and Data. This contains Supplemental Methods, Supplemental Tables 1 and 2 and Supplemental Figures 1-5
Genetic regulation of gene expression and splicing during a 10-year period of human aging
Background: Molecular and cellular changes are intrinsic to aging and age-related diseases. Prior cross-sectional studies have investigated the combined effects of age and genetics on gene expression and alternative splicing; however, there has been no long-term, longitudinal characterization of these molecular changes, especially in older age. Results: We perform RNA sequencing in whole blood from the same individuals at ages 70 and 80 to quantify how gene expression, alternative splicing, and their genetic regulation are altered during this 10-year period of advanced aging at a population and individual level. We observe that individuals are more similar to their own expression profiles later in life than profiles of other individuals their own age. We identify 1291 and 294 genes differentially expressed and alternatively spliced with age, as well as 529 genes with outlying individual trajectories. Further, we observe a strong correlation of genetic effects on expression and splicing between the two ages, with a small subset of tested genes showing a reduction in genetic associations with expression and splicing in older age. Conclusions: These findings demonstrate that, although the transcriptome and its genetic regulation is mostly stable late in life, a small subset of genes is dynamic and is characterized by a reduction in genetic regulation, most likely due to increasing environmental variance with age
Recommended from our members
Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease
Long non-coding RNA (lncRNA) genes have well-established and important impacts on molecular and cellular functions. However, among the thousands of lncRNA genes, it is still a major challenge to identify the subset with disease or trait relevance. To systematically characterize these lncRNA genes, we used Genotype Tissue Expression (GTEx) project v8 genetic and multi-tissue transcriptomic data to profile the expression, genetic regulation, cellular contexts, and trait associations of 14,100 lncRNA genes across 49 tissues for 101 distinct complex genetic traits. Using these approaches, we identified 1,432 lncRNA gene-trait associations, 800 of which were not explained by stronger effects of neighboring protein-coding genes. This included associations between lncRNA quantitative trait loci and inflammatory bowel disease, type 1 and type 2 diabetes, and coronary artery disease, as well as rare variant associations to body mass index.[Display omitted]•29% of lncRNA genes with eQTLs show tissue-specific genetic regulation•Co-expression networks and single-cell data provide annotations for 94% of lncRNAs•Rare variants near lncRNA expression outliers impact complex traits, like BMI•We identify 800 lncRNA-trait relationships not explained by protein-coding genesA systematic analysis of NIH Genotype Tissue Expression (GTEx) project data provides insights into lncRNA expression patterns and functions, explores the impact of genetic variation on lncRNAs, and connects lncRNAs to complex traits and human disease