43,380 research outputs found

    Zero-temperature TAP equations for the Ghatak-Sherrington model

    Full text link
    The zero-temperature TAP equations for the spin-1 Ghatak-Sherrington model are investigated. The spin-glass energy density (ground state) is determined as a function of the anisotropy crystal field DD for a large number of spins. This allows us to locate a first-order transition between the spin-glass and paramagnetic phases within a good accuracy. The total number of solutions is also determined as a function of DD.Comment: 11 pages, 2 ps figures include

    AdS/QCD, Light-Front Holography, and Sublimated Gluons

    Full text link
    Gauge/gravity duality leads to a simple, analytical, and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian. This approach, called "Light-Front Holography", successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schrodinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable zeta in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons -- the relativistic analogs of the Schrodinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of a non-perturbative effective running coupling and its beta-function with an infrared fixed point which agrees with the effective coupling extracted from measurements of the Bjorken sum rule below 1 GeV^2. This is consistent with a flux-tube interpretation of QCD where soft gluons are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.Comment: Invited talk, presented by SJB at the International Workshop on QCD Green's Functions, Confinement and Phenomenology, 5-9 September 2011, Trento, Ital

    Effects of Random Biquadratic Couplings in a Spin-1 Spin-Glass Model

    Full text link
    A spin-1 model, appropriated to study the competition between bilinear (J_{ij}S_{i}S_{j}) and biquadratic (K_{ij}S_{i}^{2}S_{j}^{2}) random interactions, both of them with zero mean, is investigated. The interactions are infinite-ranged and the replica method is employed. Within the replica-symmetric assumption, the system presents two phases, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic couplings between the spins.Comment: 16 pages plus 2 ps figure

    AdS/QCD, Light-Front Holography, and Color Confinement

    Full text link
    A remarkable holographic feature of dynamics in AdS space in five dimensions is that it is dual to Hamiltonian theory in physical space-time, quantized at fixed light-front time {\tau} = t+z/c. This light-front holographic principle provides a precise relation between the bound-state amplitudes in AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The fifth dimension coordinate z is dual to the light front variable {\zeta} describing the invariant separation of the quark constituents. The resulting valence Fock-state wavefunction eigensolutions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schr\"odinger equation. The soft-wall dilaton profile exp ({\kappa}^2 {\zeta}^2) provides a model for the light-front potential which is color-confining and reproduces well the linear Regge behavior of the light-quark hadron spectrum in both L, the orbital angular momentum, and n, the radial node number. The pion mass vanishes in the chiral limit and other features of chiral symmetry are satisfied. The resulting running QCD coupling displays an infrared fixed point. The elastic and transition form factors of the pion and the nucleons are also found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent analytic first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.Comment: Contribution to the Proceedings of the conference, Xth Quark Confinement and the Hadron Spectrum, October 8-12, 2012, TUM Campus Garching, Munich, German

    Effective restoration of chiral and axial symmetries at finite temperature and density

    Full text link
    The effective restoration of chiral and axial symmetries is investigated within the framework of the SU(3) Nambu-Jona-Lasinio model. The topological susceptibility, modeled from lattice data at finite temperature, is used to extract the temperature dependence of the coupling strength of the anomaly. The study of the scalar and pseudoscalar mixing angles is performed in order to discuss the evolution of the flavor combinations of qqˉq \bar q pairs and its consequences for the degeneracy of chiral partners. A similar study at zero temperature and finite density is also realized.Comment: 5 pages, 1 figure. Talk given at Strange Quark Matter 2004, Cape Town, South Africa, 15-20 September, 200
    corecore