30,422 research outputs found

    Relativistic Effects of Mixed Vector-Scalar-Pseudoscalar Potentials for Fermions in 1+1 Dimensions

    Full text link
    The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar P\"{o}schl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases

    Unified Treatment of Mixed Vector-Scalar Screened Coulomb Potentials for Fermions

    Full text link
    The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.Comment: 7 page

    On Duffin-Kemmer-Petiau particles with a mixed minimal-nonminimal vector coupling and the nondegenerate bound states for the one-dimensional inversely linear background

    Full text link
    The problem of spin-0 and spin-1 bosons in the background of a general mixing of minimal and nonminimal vector inversely linear potentials is explored in a unified way in the context of the Duffin-Kemmer-Petiau theory. It is shown that spin-0 and spin-1 bosons behave effectively in the same way. An orthogonality criterion is set up and it is used to determine uniquely the set of solutions as well as to show that even-parity solutions do not exist.Comment: 10 page

    Stationary states of fermions in a sign potential with a mixed vector-scalar coupling

    Full text link
    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm-Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein's paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries.Comment: 4 figure

    Scattering and bound states of fermions in a mixed vector-scalar smooth step potential

    Full text link
    The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space-time.Comment: 5 figures. arXiv admin note: substantial text overlap with arXiv:1310.847

    Relativistic Coulomb scattering of spinless bosons

    Full text link
    The relativistic scattering of spin-0 bosons by spherically symmetric Coulomb fields is analyzed in detail with an arbitrary mixing of vector and scalar couplings. It is shown that the partial wave series reduces the scattering amplitude to the closed Rutherford formula exactly when the vector and scalar potentials have the same magnitude, and as an approximation for weak fields. The behavior of the scattering amplitude near the conditions that furnish its closed form is also discussed. Strong suppressions of the scattering amplitude when the vector and scalar potentials have the same magnitude are observed either for particles or antiparticles with low incident momentum. We point out that such strong suppressions might be relevant in the analysis of the scattering of fermions near the conditions for the spin and pseudospin symmetries. From the complex poles of the partial scattering amplitude the exact closed form of bound-state solutions for both particles and antiparticles with different scenarios for the coupling constants are obtained. Perturbative breaking of the accidental degeneracy appearing in a pair of special cases is related to the nonconservation of the Runge-Lenz vector

    Spin and pseudospin symmetries of the Dirac equation with confining central potentials

    Full text link
    We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar SS and vector VV confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+CV=\pm S+C, where CC is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not happen for potentials going to zero at large distances, used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for anti-fermions.Comment: 7 pages, uses revtex macro

    A Rice method proof of the Null-Space Property over the Grassmannian

    Full text link
    The Null-Space Property (NSP) is a necessary and sufficient condition for the recovery of the largest coefficients of solutions to an under-determined system of linear equations. Interestingly, this property governs also the success and the failure of recent developments in high-dimensional statistics, signal processing, error-correcting codes and the theory of polytopes. Although this property is the keystone of â„“_1\ell\_{1}-minimization techniques, it is an open problem to derive a closed form for the phase transition on NSP. In this article, we provide the first proof of NSP using random processes theory and the Rice method. As a matter of fact, our analysis gives non-asymptotic bounds for NSP with respect to unitarily invariant distributions. Furthermore, we derive a simple sufficient condition for NSP.Comment: 18 Pages, some Figure
    • …
    corecore