23,706 research outputs found

    The Role of Fermions in Bubble Nucleation

    Get PDF
    We present a study of the role of fermions in the decay of metastable states of a scalar field via bubble nucleation. We analyze both one and three-dimensional systems by using a gradient expansion for the calculation of the fermionic determinant. The results of the one-dimensional case are compared to the exact results of previous work.Comment: 15 pages, revtex, 9 figure

    A Tolman Surface Brightness Test for Universal Expansion, and the Evolution of Elliptical Galaxies in Distant Clusters

    Get PDF
    We use the intercept of the elliptical galaxy radius--surface brightness (SB) relation at a fixed metric radius as the standard condition for the Tolman SB test of the universal expansion. We use surface photometry in the optical and near-IR of elliptical galaxies in Abell~2390 (z=0.23z=0.23) and Abell~851 (z=0.41z=0.41), and compare them to the Coma cluster at z≈0z\approx 0. The photometric data for each cluster are well-described by the Kormendy relation re∝ΣeAr_e \propto \Sigma_e^{A}, where A=−0.9A=-0.9 in the optical and A=−1.0A=-1.0 in the near-IR. The scatter about this near-IR relation is only 0.0760.076 in log⁥re\log r_e at the highest redshift, which is much smaller than at low redshifts, suggesting a remarkable homogeneity of the cluster elliptical population at z=0.41z=0.41. We use the intercept of these fixed-slope correlations at Re=1R_e = 1~kpc (assuming H0=75H_0=75~km~s−1^{-1}~Mpc−1^{-1}, Ω0=0.2\Omega_0=0.2, and Λ0=0\Lambda_0=0, where the results are only weakly dependent on the cosmology) to construct the Tolman SB test for these three clusters. The data are fully consistent with universal expansion if we assume simple models of passive evolution for elliptical galaxies, but are inconsistent with a non-expanding geometry (the tired light cosmology) at the 5 σ5 \, \sigma confidence level at z=0.41z=0.41. These results suggest luminosity evolution in the restframe KK-band of 0.36±0.140.36 \pm 0.14~mag from z=0.41z = 0.41 to the present, and are consistent with the ellipticals having formed at high redshift. The SB intercept in elliptical galaxy correlations is thus a powerful tool for investigating models of their evolution for significant lookback times.Comment: to appear in The Astrophysical Journal (Letters); 13 pages, including 3 Postscript figures and 1 table; uuencoded, compressed format; the paper is also available in various formats from http://astro.caltech.edu/~map/map.bibliography.refereed.htm
    • 

    corecore