133 research outputs found

    The other side of the coin: oxytocin decreases the adherence to fairness norms

    Get PDF
    Oxytocin (OXT) has been implicated in prosocial behaviors such as trust and generosity. Yet, these effects appear to strongly depend on characteristics of the situation and the people with whom we interact or make decisions. Norms and rules can facilitate and guide our actions, with fairness being a particularly salient and fundamental norm. The current study investigated the effects of intranasal OXT administration on fairness considerations in social decision-making in a double-blind, placebo-controlled within-subject design. After having received 24 IU of OXT or placebo (PLC), participants completed a one-shot Dictator Game (DG) and played the role of the responder in a modified version of the Ultimatum Game (UG), in which an unfair offer of eight coins for the proposer and two coins for the responder is paired with either a fair-(5:5) or no-alternative (8:2). Rejection rates were higher when a fair alternative had been available than when there was no alternative to an unfair offer. Importantly, OXT did not de-or increase rejection rates overall, but reduced the sensitivity to contextual fairness, i.e., the context of alternatives in which an offer was made. As dictators, participants allocated less coins to the recipient when given OXT than when given PLC, indicating a decline in generosity. These results suggest that OXT decreases the adherence to fairness norms in social settings where others are likely to be perceived as not belonging to one's ingroup. While our findings do not support the prosocial conception of OXT, they corroborate recent ideas that the effects of OXT are more nuanced than assumed in the past

    Is Your Error My Concern? An Event-Related Potential Study on Own and Observed Error Detection in Cooperation and Competition

    Get PDF
    Electroencephalogram studies have identified an error-related event-related potential (ERP) component known as the error-related negativity or ERN, thought to result from the detection of a loss of reward during performance monitoring. However, as own errors are always associated with a loss of reward, disentangling whether the ERN is error- or reward-dependent has proven to be a difficult endeavor. Recently, an ERN has also been demonstrated following the observation of other’s errors. Importantly, other people’s errors can be associated with loss or gain depending on the cooperative or competitive context in which they are made. The aim of the current ERP study was to disentangle the error- or reward-dependency of performance monitoring. Twelve pairs (N = 24) of participants performed and observed a speeded-choice-reaction task in two contexts. Own errors were always associated with a loss of reward. Observed errors in the cooperative context also yielded a loss of reward, but observed errors in the competitive context resulted in a gain. The results showed that the ERN was present following all types of errors independent of who made the error and the outcome of the action. Consequently, the current study demonstrates that performance monitoring as reflected by the ERN is error-specific and not directly dependent on reward

    Acute Effects of Delta-9-Tetrahydrocannabinol on Performance Monitoring in Healthy Volunteers

    Get PDF
    Rationale: The error-related negativity (ERN) is a negative event-related potential that occurs immediately after an erroneous response and is thought to reflect human performance monitoring. Delta-9-Tetrahydrocannabinol (THC) administration in healthy volunteers has been linked to impaired performance monitoring in behavioral studies, but to date no studies have examined the effects of cannabinoids on the ERN. Methods: EEG data from 10 healthy volunteers was recorded during execution of a speeded choice-reaction-time task (Flankers task) after administration of THC or placebo vapor in a double-blind randomized crossover design. Results: The findings of this study show that the ERN was significantly reduced after administration of THC. The behavioral outcomes on the Flankers task showed no indications of drug-induced impairments. Discussion: The diminished ERN reflects impairments in the process of performance monitoring. The task design was not optimized to find behavioral effects. The study shows that cannabinoids impair performance monitoring

    Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience

    Get PDF
    The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.</p

    Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience

    Get PDF
    The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.</p

    How a co-actor’s task affects monitoring of own errors: evidence from a social event-related potential study

    Get PDF
    Efficient flexible behavior requires continuous monitoring of performance for possible deviations from the intended goal of an action. This also holds for joint action. When jointly performing a task, one needs to not only know the other’s goals and intentions but also generate behavioral adjustments that are dependent on the other person’s task. Previous studies have shown that in joint action people not only represent their own task but also the task of their co-actor. The current study investigated whether these so-called shared representations affect error monitoring as reflected in the response-locked error-related negativity (Ne/ERN) following own errors. Sixteen pairs of participants performed a social go/no-go task, while EEG and behavioral data were obtained. Responses were compatible or incompatible relative to the go/no-go action of the co-actor. Erroneous responses on no-go stimuli were examined. The results demonstrated increased Ne/ERN amplitudes and longer reaction times following errors on compatible compared to incompatible no-go stimuli. Thus, Ne/ERNs were larger after errors on trials that did not require a response from the co-actor either compared to errors on trials that did require a response from the co-actor. As the task of the other person is the only difference between these two types of errors, these findings show that people also represent their co-actor’s task during error monitoring in joint action. An extension of existing models on performance monitoring in individual action is put forward to explain the current findings in joint action. Importantly, we propose that inclusion of a co-actor’s task in performance monitoring may facilitate adaptive behavior in social interactions enabling fast anticipatory and corrective actions

    Topical photodynamic therapy using different porphyrin precursors leads to differences in vascular photosensitization and vascular damage in normal mouse skin

    Get PDF
    Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA-PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy. The ability of the vasculature to synthesize PpIX and be damaged by PDT was compared between HAL, ALA and MAL in mouse skin using confocal microscopy and fluorescent CD31 and CD144 antibodies. Colocalization of CD31 and PpIX (left images) was calculated to measure endothelial PpIX synthesis. Vascular damage was scored as loss of normal CD144 staining (right images). Both PpIX synthesis and vascular damage were highest for HAL, then ALA, then MAL. This illustrates that superficial blood vessels synthesize biologically relevant amounts of PpIX. Vascular responses can limit oxygen supply during or after PDT and are expected to influence outcome

    Classification of Event-Related Potentials Associated with Response Errors in Actors and Observers Based on Autoregressive Modeling

    Get PDF
    Event-Related Potentials (ERPs) provide non-invasive measurements of the electrical activity on the scalp related to the processing of stimuli and preparation of responses by the brain. In this paper an ERP-signal classification method is proposed for discriminating between ERPs of correct and incorrect responses of actors and of observers seeing an actor making such responses. The classification method targeted signals containing error-related negativity (ERN) and error positivity (Pe) components, which are typically associated with error processing in the human brain. Feature extraction consisted of Multivariate Autoregressive modeling combined with the Simulated Annealing technique. The resulting information was subsequently classified by means of an Artificial Neural Network (ANN) using back-propagation algorithm under the “leave-one-out cross-validation” scenario and the Fuzzy C-Means (FCM) algorithm. The ANN consisted of a multi-layer perceptron (MLP). The approach yielded classification rates of up to 85%, both for the actors’ correct and incorrect responses and the corresponding ERPs of the observers. The electrodes needed for such classifications were situated mainly at central and frontal areas. Results provide indications that the classification of the ERN is achievable. Furthermore, the availability of the Pe signals, in addition to the ERN, improves the classification, and this is more pronounced for observers’ signals. The proposed ERP-signal classification method provides a promising tool to study error detection and observational-learning mechanisms in performance monitoring and joint-action research, in both healthy and patient populations
    corecore