19 research outputs found

    99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy

    Get PDF
    PURPOSE: The purpose of this study was to determine the value of (99m)Tc Hynic-rh-Annexin-V-Scintigraphy (TAVS), a non-invasive in vivo technique to demonstrate apoptosis in patients with head and neck squamous cell carcinoma. METHODS: TAVS were performed before and within 48 h after the first course of cisplatin-based chemoradiation. Radiation dose given to the tumour at the time of post-treatment TAVS was 6-8 Gy. Single-photon emission tomography data were co-registered to planning CT scan. Complete sets of these data were available for 13 patients. The radiation dose at post-treatment TAVS was calculated for several regions of interest (ROI): primary tumour, involved lymph nodes and salivary glands. Annexin uptake was determined in each ROI, and the difference between post-treatment and baseline TAVS represented the absolute Annexin uptake: Delta uptake (DeltaU). RESULTS: In 24 of 26 parotid glands, treatment-induced Annexin uptake was observed. Mean DeltaU was significantly correlated with the mean radiation dose given to the parotid glands (r = 0.59, p = 0.002): Glands that received higher doses showed more Annexin uptake. DeltaU in primary tumour and pathological lymph nodes showed large inter-patient differences. A high correlation was observed on an inter-patient level (r = 0.71, p = 0.006) between the maximum DeltaU in primary tumour and in the lymph nodes. CONCLUSIONS: Within the dose range of 0-8 Gy, Annexin-V-scintigraphy showed a radiation-dose-dependent uptake in parotid glands, indicative of early apoptosis during treatment. The inter-individual spread in Annexin uptake in primary tumours could not be related to differences in dose or tumour volume, but the Annexin uptake in tumour and lymph nodes were closely correlated. This effect might represent a tumour-specific apoptotic respons

    Influence of the number of elongated fiducial markers on the localization accuracy of the prostate.

    No full text
    Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each othe

    Application of video imaging for improvement of patient set-up.

    No full text
    BACKGROUND AND PURPOSE: For radiotherapy of prostate cancer, the patient is usually positioned in the left-right (LR) direction by aligning a single marker on the skin with the projection of a room laser. The aim of this study is to investigate the feasibility of a room-mounted video camera in combination with previously acquired CT data to improve patient set-up along the LR axis. MATERIAL AND METHODS: The camera was mounted in the treatment room at the caudal side of the patient. For 22 patients with prostate cancer 127 video and portal images were acquired. The set-up error determined by video imaging was found by matching video images with rendered CT images using various techniques. This set-up error was retrospectively compared with the set-up error derived from portal images. It was investigated whether the number of corrections based on portal imaging would decrease if the information obtained from the video images had been used prior to irradiation. Movement of the skin with respect to bone was quantified using an analysis of variance method. RESULTS: The measurement of the set-up error was most accurate for a technique where outlines and groins on the left and right side of the patient were delineated and aligned individually to the corresponding features extracted from the rendered CT image. The standard deviations (SD) of the systematic and random components of the set-up errors derived from the portal images in the LR direction were 1.5 and 2.1 mm, respectively. When the set-up of the patients was retrospectively adjusted based on the video images, the SD of the systematic and random errors decreased to 1.1 and 1.3 mm, respectively. From retrospective analysis, a reduction of the number of set-up corrections (from nine to six corrections) is expected when the set-up would have been adjusted using the video images. The SD of the magnitude of motion of the skin of the patient with respect to the bony anatomy was estimated to be 1.1 mm. CONCLUSION: Video imaging is an accurate technique for measuring the set-up of prostate cancer patients in the LR direction. The outline of the patient is a more accurate estimate of the set-up of the bony anatomy than the marker on the patient's abdome

    Quantification of local rectal wall displacements by virtual rectum unfolding.

    No full text
    BACKGROUND AND PURPOSE: To develop a method to project surface elements of a bent tubular organ, e.g. the rectum, in order to create a two-dimensional (2D) map and to use this method to quantify on a local scale shape and position variations of the rectum. PATIENTS AND METHODS: For this study we used data of 19 patients, who each received a planning CT scan and 9-13 repeat CT scans that were considered representative for the radiotherapy course. We combined maps from multiple CT scans of the same patient to quantify local rectal wall displacements. To make a map we first computed a central axis through the rectum and divided it into segments of equal length assuming that the length of these segments was invariant under rectum shape and position changes. Next, we constructed for each segment a planar cross section through the rectum, which was oriented orthogonally to that segment. The amount of rectal wall tissue was assumed to be constant in all orthogonal cross sections throughout the entire rectum. We unfolded the cross-sected rectal wall at the dorsal side and projected either the associated dose or the coordinates onto the map. RESULTS: The largest variation in the position of the rectal wall during the treatment course occurred at the upper anterior, left and right side (1 SD=5-7 mm). Near the anus the variation was <3 mm (1 SD) and at the posterior side of the rectum <4 mm (1 SD). The anterior-posterior (AP) and left-right displacements between the rectum in the planning CT scan and the mean rectum shape during the treatment were localized between 40 and 80% of the central axis. At the upper anterior, left, and right side the displacements were 5-8 mm (1 SD). These rectal wall displacements correlated with the rectum volume in the planning CT scan. At the upper anterior side the correlation coefficient between the AP displacements and the planning rectum volume was 0.85. CONCLUSIONS: We quantified variations in rectum shape and in dose in the rectal wall. The systematic error in rectal wall position was found to be larger than the random shape and position variations. We successfully developed a method to virtually unfold a rectum and to project the dose onto a 2D map. The spatial information of the dose distribution can be used in the analysis of rectum complication

    Strategies for online organ motion correction for intensity-modulated radiotherapy of prostate cancer: prostate, rectum, and bladder dose effects.

    No full text
    PURPOSE: To quantify and evaluate the accumulated prostate, rectum, and bladder dose for several strategies including rotational organ motion correction for intensity-modulated radiotherapy (IMRT) of prostate cancer using realistic organ motion data. METHODS AND MATERIALS: Repeat computed tomography (CT) scans of 19 prostate patients were used. Per patient, two IMRT plans with different uniform margins were created. To quantify prostate and seminal vesicle motion, repeat CT clinical target volumes (CTVs) were matched onto the planning CTV using deformable registration. Four different strategies, from online setup to full motion correction, were simulated. Rotations were corrected for using gantry and collimator angle adjustments. Prostate, rectum, and bladder doses were accumulated for each patient, plan, and strategy. Minimum CTV dose (D(min)), rectum equivalent uniform dose (EUD, n = 0.13), and bladder surface receiving >/=78 Gy (S78), were calculated. RESULTS: With online CTV translation correction, a 7-mm margin was sufficient (i.e., D(min) >/= 95% of the prescribed dose for all patients). A 4-mm margin required additional rotational correction. Margin reduction lowered the rectum EUD(n = 0.13) by approximately 2.6 Gy, and the bladder S78 by approximately 1.9%. CONCLUSIONS: With online correction of both translations and rotations, a 4-mm margin was sufficient for 15 of 19 patients, whereas the remaining four patients had an underdosed CTV volume <1%. Margin reduction combined with online corrections resulted in a similar or lower dose to the rectum and bladder. The more advanced the correction strategy, the better the planned and accumulated dose agree

    Prognostic value of primary tumor volume after concurrent chemoradiation with daily low-dose cisplatin for advanced-stage head and neck carcinoma

    No full text
    BACKGROUND: The purpose of this study was to evaluate the prognostic value of tumor volume in head and neck squamous cell carcinoma treated with chemoradiation. METHODS: Forty-six patients were treated with radiotherapy and cisplatin (6 mg/m(2) IV x 20, daily). Baseline primary tumor volume was recorded from MRI scans. The prognostic impact of tumor volume and other factors for locoregional control, disease-free survival (DFS), and overall survival (OS) was tested. RESULTS: Mean tumor volume was 28 cm(3) (median 23 cm(3); range, 3-112). The locoregional control rate at 3 years was 81% for patients with tumor volumes or = median (p = .036). At multivariate analysis, it appeared that tumor volume remained an independent determinant of locoregional control and survival when adjusted for other factors. CONCLUSIONS: In advanced-stage head and neck squamous cell carcinoma treated with concurrent chemoradiation, primary tumor volume is associated with locoregional control and survival. Larger studies are needed to confirm whether incorporation of tumor volume in the staging system improves prediction of treatment outcome and can serve as a tool to guide treatment option

    Residual seminal vesicle displacement in marker-based image-guided radiotherapy for prostate cancer and the impact on margin design.

    No full text
    The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due to marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R(2) = 42%); a correlation existed between both SVs for AP displacement (R(2) = 62%); considerable correlation existed between random errors of SV displacement and TRE (R(2) = 34%). Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into accoun
    corecore