4 research outputs found

    Adiabatic compression and indirect detection of supersymmetric dark matter

    Full text link
    Recent developments in the modelling of the dark matter distribution in our Galaxy point out the necessity to consider some physical processes to satisfy observational data. In particular, models with adiabatic compression, which include the effect of the baryonic gas in the halo, increase significantly the dark matter density in the central region of the Milky Way. On the other hand, the non-universality in scalar and gaugino sectors of supergravity models can also increase significantly the neutralino annihilation cross section. We show that the combination of both effects gives rise to a gamma-ray flux arising from the Galactic Center largely reachable by future experiments like GLAST. We also analyse in this framework the EGRET excess data above 1 GeV, as well as the recent data from CANGAROO and HESS. The analysis has been carried out imposing the most recent experimental constraints, such as the lower bound on the Higgs mass, the \bsg branching ratio, and the muon g−2g-2. In addition, the recently improved upper bound on B(Bs→μ+μ−)B(B_s \to \mu^+ \mu^-) has also been taken into account. The astrophysical (WMAP) bounds on the dark matter density have also been imposed on the theoretical computation of the relic neutralino density through thermal production.Comment: 32 pages, 11 figures, final version to appear in JCA

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio

    Collider, direct and indirect detection of supersymmetric dark matter

    Full text link
    We present an overview of supersymmetry searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the dark matter sector. In contrast to the mSUGRA model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m_0-m_{1/2} plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared to generic predictions from minimal supergravity. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the NLSP is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.Comment: 28 pages, 11 eps figures; invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics
    corecore