4 research outputs found

    Trajectories in a space with a spherically symmetric dislocation

    Full text link
    We consider a new type of defect in the scope of linear elasticity theory, using geometrical methods. This defect is produced by a spherically symmetric dislocation, or ball dislocation. We derive the induced metric as well as the affine connections and curvature tensors. Since the induced metric is discontinuous, one can expect ambiguity coming from these quantities, due to products between delta functions or its derivatives, plaguing a description of ball dislocations based on the Geometric Theory of Defects. However, exactly as in the previous case of cylindric defect, one can obtain some well-defined physical predictions of the induced geometry. In particular, we explore some properties of test particle trajectories around the defect and show that these trajectories are curved but can not be circular orbits.Comment: 11 pages, 3 figure

    Non-singular screw dislocations as the Coulomb gas with smoothed out coupling and the renormalization of the shear modulus

    Full text link
    A field theory is developed for a thermodynamical description of array of parallel non-singular screw dislocations in elastic cylinder. The partition function of the system is considered in the functional integral form. Self-energy of the dislocation cores is chosen in the form suggested by the gauge-translational model of non-singular screw dislocation. It is shown that the system of the dislocations is equivalent to the two-dimensional Coulomb gas. The coupling potential is prevented from a short-distance divergency since the core energies are taken into account. Two-point correlation functions of the stress components are obtained. Renormalization of the shear modulus caused by the presence of the dislocations is studied in the approximation of non-interacting dislocation dipoles. It is demonstrated that the finite size of the dislocation cores results in a modification of the renormalization law.Comment: 20 pages, LaTe
    corecore