36 research outputs found
Binocular summation and other forms of non-dominant eye contribution in individuals with strabismic amblyopia during habitual viewing
YesAdults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals
A Limited Role for Suppression in the Central Field of Individuals with Strabismic Amblyopia.
yesBackground: Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia
typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally
believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and
strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a
highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is
equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is
crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that
suppression exists when it does not.
Methodology/Results: Here we present the results of an experiment conducted with a new method to examine the
prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no
evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was
small.
Conclusions: Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia
than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our
results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more
generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with
strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent
evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual
normals, performance with two eyes is better than with the better eye alone in these individuals
The Early Data Release of the Dark Energy Spectroscopic Instrument
\ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra
Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a
survey covering 14,000 deg over five years to constrain the cosmic
expansion history through precise measurements of Baryon Acoustic Oscillations
(BAO). The scientific program for DESI was evaluated during a five month Survey
Validation (SV) campaign before beginning full operations. This program
produced deep spectra of tens of thousands of objects from each of the stellar
(MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy
(ELG), and quasar target classes. These SV spectra were used to optimize
redshift distributions, characterize exposure times, determine calibration
procedures, and assess observational overheads for the five-year program. In
this paper, we present the final target selection algorithms, redshift
distributions, and projected cosmology constraints resulting from those
studies. We also present a `One-Percent survey' conducted at the conclusion of
Survey Validation covering 140 deg using the final target selection
algorithms with exposures of a depth typical of the main survey. The Survey
Validation indicates that DESI will be able to complete the full 14,000 deg
program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG,
and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87
million, respectively. These samples will allow exploration of the Milky Way
halo, clustering on all scales, and BAO measurements with a statistical
precision of 0.28% over the redshift interval , 0.39% over the redshift
interval , and 0.46% over the redshift interval .Comment: 42 pages, 18 figures, accepted by A
DOSAGE DE LA CYSTINE DANS LES ALIMENTS
International audienc
Recommended from our members
Testing for spectral index variations in polarized CMB foregrounds
ABSTRACT
We present a Bayesian parametric component separation method for polarized microwave sky maps. We solve jointly for the primary cosmic microwave background (CMB) signal and the main Galactic polarized foreground components. For the latter, we consider electron-synchrotron radiation and thermal dust emission, modelled in frequency as a power law and a modified blackbody, respectively. We account for inter-pixel correlations in the noise covariance matrices of the input maps and introduce a spatial correlation length in the prior matrices for the spectral indices ÎČ. We apply our method to low-resolution polarized Planck 2018 Low and High Frequency Instrument (LFI/HFI) data, including the SRoll2 re-processing of HFI data. We find evidence for spatial variation of the synchrotron spectral index, and no evidence for depolarization of dust. Using the HFI SRoll2 maps, and applying wide priors on the spectral indices, we find a mean polarized synchrotron spectral index over the unmasked sky of . For polarized thermal dust emission, we obtain . Using our recovered CMB maps and associated uncertainties, we constrain the optical depth to reionization, Ï, using a cross-spectrum-based likelihood-approximation scheme (momento) to be Ï = 0.0598 ± 0.0059. We confirm our findings using a pixel-based likelihood (pixLike). In both cases, we obtain a result that is consistent with that found by subtracting spatially uniform foreground templates. While the latter method is sufficient for current polarization data from Planck, next-generation space-borne CMB experiments will need more powerful schemes such as the one presented here.</jats:p
Recommended from our members
B-mode constraints from Planck low-multipole polarization data
ABSTRACT
We present constraints on primordial B modes from large-angular scale cosmic microwave background polarization anisotropies measured with the Planck satellite. To remove Galactic polarized foregrounds, we use a Bayesian parametric component separation method, modelling synchrotron radiation as a power law and thermal dust emission as a modified blackbody. This method propagates uncertainties from the foreground cleaning into the noise covariance matrices of the maps. We construct two likelihoods: (i) a semi-analytical cross-spectrum-based likelihood-approximation scheme (momento), and (ii) an exact polarization-only pixel-based likelihood (pixLike). Since momento is based on cross-spectra, it is statistically less powerful than pixLike, but is less sensitive to systematic errors correlated across frequencies. Both likelihoods give a tensor-to-scalar ratio, r, that is consistent with zero from low-multipole (2 †â &lt; 30) Planckpolarization data. From full-mission maps, we obtain r0.05 &lt; 0.274 at 95 per cent confidence at a pivot scale of k* ⥠0.05âMpcâ1, using pixLike. momento gives a qualitatively similar but weaker 95 per cent confidence limit of r0.05 &lt; 0.408.</jats:p
COMPOSITION EN ACIDES AMINĂS DE QUELQUES ALIMENTS
International audienc