25 research outputs found

    Binocular summation and other forms of non-dominant eye contribution in individuals with strabismic amblyopia during habitual viewing

    Get PDF
    YesAdults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals

    A Limited Role for Suppression in the Central Field of Individuals with Strabismic Amblyopia.

    Get PDF
    yesBackground: Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not. Methodology/Results: Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was small. Conclusions: Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than with the better eye alone in these individuals

    DOSAGE DE LA CYSTINE DANS LES ALIMENTS

    No full text
    International audienc

    COMPOSITION EN ACIDES AMINÉS

    No full text

    Validation of the DESI 2024 Lyman Alpha Forest BAL Masking Strategy

    No full text
    International audienceBroad absorption line quasars (BALs) exhibit blueshifted absorption relative to a number of their prominent broad emission features. These absorption features can contribute to quasar redshift errors and add absorption to the Lyman-alpha (LyA) forest that is unrelated to large-scale structure. We present a detailed analysis of the impact of BALs on the Baryon Acoustic Oscillation (BAO) results with the LyA forest from the first year of data from the Dark Energy Spectroscopic Instrument (DESI). The baseline strategy for the first year analysis is to mask all pixels associated with all BAL absorption features that fall within the wavelength region used to measure the forest. We explore a range of alternate masking strategies and demonstrate that these changes have minimal impact on the BAO measurements with both DESI data and synthetic data. This includes when we mask the BAL features associated with emission lines outside of the forest region to minimize their contribution to redshift errors. We identify differences in the properties of BALs in the synthetic datasets relative to the observational data, as well as use the synthetic observations to characterize the completeness of the BAL identification algorithm, and demonstrate that incompleteness and differences in the BALs between real and synthetic data also do not impact the BAO results for the LyA forest
    corecore