600 research outputs found
Long-Lived Non-Equilibrium Interstitial-Solid-Solutions in Binary Mixtures
We perform particle resolved experimental studies on the heterogeneous
crystallisation process of two compo- nent mixtures of hard spheres. The
components have a size ratio of 0.39. We compared these with molecular dynamics
simulations of homogenous nucleation. We find for both experiments and
simulations that the final assemblies are interstitial solid solutions, where
the large particles form crystalline close-packed lattices, whereas the small
particles occupy random interstitial sites. This interstitial solution
resembles that found at equilibrium when the size ratios are 0.3 [Filion et
al., Phys. Rev. Lett. 107, 168302 (2011)] and 0.4 [Filion, PhD Thesis, Utrecht
University (2011)]. However, unlike these previous studies, for our system sim-
ulations showed that the small particles are trapped in the octahedral holes of
the ordered structure formed by the large particles, leading to long-lived
non-equilibrium structures in the time scales studied and not the equilibrium
interstitial solutions found earlier. Interestingly, the percentage of small
particles in the crystal formed by the large ones rapidly reaches a maximum of
around 14% for most of the packing fractions tested, unlike previous
predictions where the occupancy of the interstitial sites increases with the
system concentration. Finally, no further hopping of the small particles was
observed
Anderson Localization Phenomenon in One-dimensional Elastic Systems
The phenomenon of Anderson localization of waves in elastic systems is
studied. We analyze this phenomenon in two different set of systems: disordered
linear chains of harmonic oscillators and disordered rods which oscillate with
torsional waves. The first set is analyzed numerically whereas the second one
is studied both experimentally and theoretically. In particular, we discuss the
localization properties of the waves as a function of the frequency. In doing
that we have used the inverse participation ratio, which is related to the
localization length. We find that the normal modes localize exponentially
according to Anderson theory. In the elastic systems, the localization length
decreases with frequency. This behavior is in contrast with what happens in
analogous quantum mechanical systems, for which the localization length grows
with energy. This difference is explained by means of the properties of the re
ection coefficient of a single scatterer in each case.Comment: 15 pages, 10 figure
Wannier-Stark ladders in one-dimensional elastic systems
The optical analogues of Bloch oscillations and their associated
Wannier-Stark ladders have been recently analyzed. In this paper we propose an
elastic realization of these ladders, employing for this purpose the torsional
vibrations of specially designed one-dimensional elastic systems. We have
measured, for the first time, the ladder wave amplitudes, which are not
directly accessible either in the quantum mechanical or optical cases. The wave
amplitudes are spatially localized and coincide rather well with theoretically
predicted amplitudes. The rods we analyze can be used to localize different
frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let
Heterogeneity in Surface Sensing Suggests a Division of Labor in Pseudomonas aeruginosa Populations
The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration
Critical properties of the optical field localization in a three-dimensional percolating system: Theory and experiment
We systematically study the optical field localization in an active
three-dimensional (3D) disordered percolating system with light nanoemitters
incorporated in percolating clusters. An essential feature of such a hybrid
medium is that the clusters are combined into a fractal radiation pattern, in
which light is simultaneously emitted and scattered by the disordered
structures. Theoretical considerations, based on systematic 3D simulations,
reveal nontrivial dynamics in the form of propagation of localized field
bunches in the percolating material. We obtain the length of the field
localization and dynamical properties of such states as functions of the
occupation probability of the disordered clusters. A transition between the
dynamical states and narrow point-like fields pinned to the emitters is found.
The theoretical analysis of the fractal field properties is followed by an
experimental study of the light generation by nanoemitters incorporated in the
percolating clusters. The experimental results corroborate theoretical
predictions.Comment: 10 pages, 14 figures, to be published Chaos, Solitons & Fractal
Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1
Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense
Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1
Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense
- …