600 research outputs found

    Long-Lived Non-Equilibrium Interstitial-Solid-Solutions in Binary Mixtures

    Get PDF
    We perform particle resolved experimental studies on the heterogeneous crystallisation process of two compo- nent mixtures of hard spheres. The components have a size ratio of 0.39. We compared these with molecular dynamics simulations of homogenous nucleation. We find for both experiments and simulations that the final assemblies are interstitial solid solutions, where the large particles form crystalline close-packed lattices, whereas the small particles occupy random interstitial sites. This interstitial solution resembles that found at equilibrium when the size ratios are 0.3 [Filion et al., Phys. Rev. Lett. 107, 168302 (2011)] and 0.4 [Filion, PhD Thesis, Utrecht University (2011)]. However, unlike these previous studies, for our system sim- ulations showed that the small particles are trapped in the octahedral holes of the ordered structure formed by the large particles, leading to long-lived non-equilibrium structures in the time scales studied and not the equilibrium interstitial solutions found earlier. Interestingly, the percentage of small particles in the crystal formed by the large ones rapidly reaches a maximum of around 14% for most of the packing fractions tested, unlike previous predictions where the occupancy of the interstitial sites increases with the system concentration. Finally, no further hopping of the small particles was observed

    Anderson Localization Phenomenon in One-dimensional Elastic Systems

    Full text link
    The phenomenon of Anderson localization of waves in elastic systems is studied. We analyze this phenomenon in two different set of systems: disordered linear chains of harmonic oscillators and disordered rods which oscillate with torsional waves. The first set is analyzed numerically whereas the second one is studied both experimentally and theoretically. In particular, we discuss the localization properties of the waves as a function of the frequency. In doing that we have used the inverse participation ratio, which is related to the localization length. We find that the normal modes localize exponentially according to Anderson theory. In the elastic systems, the localization length decreases with frequency. This behavior is in contrast with what happens in analogous quantum mechanical systems, for which the localization length grows with energy. This difference is explained by means of the properties of the re ection coefficient of a single scatterer in each case.Comment: 15 pages, 10 figure

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Heterogeneity in Surface Sensing Suggests a Division of Labor in Pseudomonas aeruginosa Populations

    Get PDF
    The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration

    Critical properties of the optical field localization in a three-dimensional percolating system: Theory and experiment

    Full text link
    We systematically study the optical field localization in an active three-dimensional (3D) disordered percolating system with light nanoemitters incorporated in percolating clusters. An essential feature of such a hybrid medium is that the clusters are combined into a fractal radiation pattern, in which light is simultaneously emitted and scattered by the disordered structures. Theoretical considerations, based on systematic 3D simulations, reveal nontrivial dynamics in the form of propagation of localized field bunches in the percolating material. We obtain the length of the field localization and dynamical properties of such states as functions of the occupation probability of the disordered clusters. A transition between the dynamical states and narrow point-like fields pinned to the emitters is found. The theoretical analysis of the fractal field properties is followed by an experimental study of the light generation by nanoemitters incorporated in the percolating clusters. The experimental results corroborate theoretical predictions.Comment: 10 pages, 14 figures, to be published Chaos, Solitons & Fractal

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense
    corecore