5 research outputs found

    Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    Get PDF
    The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this worko organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization) were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.The authors gratefully acknowledgments to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), to Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) of Brasil, and to Fundação para a Ciência e a Tecnologia (FCT), Portugal – project - SFRH/BPD/5518/2001 by the financier support

    Electrochemical characterization of samples of commercial steel treated with acetylene plasma

    Get PDF
    104-111Cutting tools have been employed in wood processing must be corrosion and wear resistant due to the acidic composition of wood and the wear generated during cutting, which lead to the deterioration of steel saws. Hydrogenated amorphous carbon films possess mechanical, tribological and barrier properties that can increase the hardness, wear and corrosion resistance of this type of tool. This work has involved an investigation of the effectiveness of plasma-deposited amorphous carbon thin films in protecting commercial carbon steel saws. Before deposition, the substrates were sputter-cleaned in argon plasma (19.27 Pa; 50 W) for 180 s. The films have been deposited using acetylene and argon mixtures excited by a radio frequency power supply (13.56 MHz, 70 W). The concentration of acetylene in the mixture has been varied in the inverse proportion to that of argon so as to maintain a constant total gas pressure of 1.8 Pa. The deposition time was 3600 s. The chemical behavior of the coated saws have been evaluated by electrochemical impedance spectroscopy (EIS) and polarization curves.Surface images of the plasma-coated samples have been recorded by scanning electron microscopy (SEM). The results have indicated that the plasma treatment has increased the corrosion resistance of carbon steel samples in acidic solutions

    Electrochemical characterization of samples of commercial steel treated with acetylene plasma

    Get PDF
    Cutting tools have been employed in wood processing must be corrosion and wear resistant due to the acidic compositionof wood and the wear generated during cutting, which lead to the deterioration of steel saws. Hydrogenated amorphouscarbon films possess mechanical, tribological and barrier properties that can increase the hardness, wear and corrosionresistance of this type of tool. This work has involved an investigation of the effectiveness of plasma-deposited amorphouscarbon thin films in protecting commercial carbon steel saws. Before deposition, the substrates were sputter-cleaned inargon plasma (19.27 Pa; 50 W) for 180 s. The films have been deposited using acetylene and argon mixtures excited by aradio frequency power supply (13.56 MHz, 70 W). The concentration of acetylene in the mixture has been varied in theinverse proportion to that of argon so as to maintain a constant total gas pressure of 1.8 Pa. The deposition time was 3600 s.The chemical behavior of the coated saws have been evaluated by electrochemical impedance spectroscopy (EIS) andpolarization curves.Surface images of the plasma-coated samples have been recorded by scanning electron microscopy(SEM). The results have indicated that the plasma treatment has increased the corrosion resistance of carbon steel samples inacidic solutions

    Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    No full text
    The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization) were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.5964Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore