2 research outputs found
Neutralino Dark Matter in Mirage Mediation
We study the phenomenology of neutralino dark matter (DM) in mirage mediation
scenario of supersymmetry breaking which results from the moduli stabilization
in some string/brane models. Depending upon the model parameters, especially
the anomaly to modulus mediation ratio determined by the moduli stabilization
mechanism, the nature of the lightest supersymmetric particle (LSP) changes
from Bino-like neutralino to Higgsino-like one via Bino-Higgsino mixing region.
For the Bino-like LSP, the standard thermal production mechanism can give a
right amount of relic DM density through the stop/stau-neutralino
coannihilation or the pseudo-scalar Higgs resonance process. We also examine
the prospect of direct and indirect DM detection in various parameter regions
of mirage mediation. Neutralino DM in galactic halo might be detected by near
future direct detection experiments in the case of Bino-Higgsino mixed LSP. The
gamma ray flux from Galactic Center might be detectable also if the DM density
profile takes a cuspy shape.Comment: One reference adde
Adiabatic compression and indirect detection of supersymmetric dark matter
Recent developments in the modelling of the dark matter distribution in our
Galaxy point out the necessity to consider some physical processes to satisfy
observational data. In particular, models with adiabatic compression, which
include the effect of the baryonic gas in the halo, increase significantly the
dark matter density in the central region of the Milky Way. On the other hand,
the non-universality in scalar and gaugino sectors of supergravity models can
also increase significantly the neutralino annihilation cross section. We show
that the combination of both effects gives rise to a gamma-ray flux arising
from the Galactic Center largely reachable by future experiments like GLAST. We
also analyse in this framework the EGRET excess data above 1 GeV, as well as
the recent data from CANGAROO and HESS. The analysis has been carried out
imposing the most recent experimental constraints, such as the lower bound on
the Higgs mass, the \bsg branching ratio, and the muon . In addition, the
recently improved upper bound on has also been taken
into account. The astrophysical (WMAP) bounds on the dark matter density have
also been imposed on the theoretical computation of the relic neutralino
density through thermal production.Comment: 32 pages, 11 figures, final version to appear in JCA