195 research outputs found
Chemigation with Micronized Sulfur Rapidly Reduces Soil pH in a New Planting of Northern Highbush Blueberry
Northern highbush blueberry (Vaccinium corymbosum L.) is adapted to acidic soil conditions and often grows poorly when soil pH is greater than 5.5. When soil pH is high, growers will usually mix prilled elemental sulfur (So) into the soil before planting (converted to sulfuric acid by soil bacteria) and, if needed, inject acid into the irrigation water after planting. These practices are effective but often expensive, time consuming, and, in the case of acid, potentially hazardous. Here, we examined the potential of applying micronized So by chemigation through a drip system as an alternative to reduce soil pH in a new planting of ‘Duke’ blueberry. The planting was located in western Oregon and established on raised beds mulched with sawdust in Oct. 2010. The So product was mixed with water and injected weekly for a period of ≈2 months before planting and again for period of ≈2 months in late summer of the second year after planting (to assess its value for reducing soil pH once the field was established), at a total rate of 0, 50, 100, and 150 kg·ha−1 So on both occasions. Each treatment was compared with the conventional practice of incorporating prilled So into the soil before planting (two applications of 750 kg·ha−1 So each in July and Oct. 2010). Within a month of the first application of So, chemigation reduced soil pH (0–10 cm depth) from an average of 6.6 with no So to 6.1 with 50 kg·ha−1 So and 5.8 with 100 or 150 kg·ha−1 So. However, the reductions in pH were short term, and by May of the following year (2011), soil pH averaged 6.7, 6.5, 6.2, and 6.1 with each increasing rate of So chemigation, respectively. Soil pH in the conventional treatment, in comparison, averaged 6.6 a month after the first application and 6.3 by the following May. In July 2012, soil pH ranged from an average of 6.4 with no So to 6.2 with 150 kg·ha−1 So and 5.5 with prilled So. Soil pH declined to as low as 5.9 following postplanting So chemigation and, at lower depths (10–30 cm), was similar between the treatment chemigated with 150 kg·ha−1 So and the conventional treatment. None of the treatments had any effect on winter pruning weight in year 1 or on yield, berry weight, or total dry weight of the plants in year 2. Concentration of P, K, Ca, Mg, S, and Mn in the leaves, on the other hand, was lower with So chemigation than with prilled So during the first year after planting, whereas concentration of N, P, and S in the leaves were lower with So chemigation during the second year. The findings indicate that So chemigation can be used to quickly reduce soil pH after planting and therefore may be a useful practice to correct high pH problems in established northern highbush blueberry fields; however, it was less effective and more time consuming than applying prilled So before plantin
Assessment of the microbial community in the cathode compartment of a plant microbial fuel cell
Introduction: In plant microbial fuel cells (plant-MFCs) living plants and microorganisms form an electrochemical unit able to produce clean and sustainable electricity from solar energy. It is reasonable to assume that besides the bacteria in the anode compartment also the cathode compartment plays a crucial role for a stable high current producing plant-MFC. In this study we aim to identify dominant bacterial species in the cathode compartment of the plant-MFC
Proceedings 2nd International PlantPower Symposium 2012
Our world is confronted with an energy crisis on a global scale. Our current energy supplies are polluting our environment and are not based on endless cycles. Clean technologies are needed that provide people and planet with safe, affordable and secure energy. PlantPower is a new additional source of electricity.
It was in 1911 when the British botanist Michael C. Potter showed that bacteria can cause electrical effects accompanied by decomposition of organic matter. Nowadays, 101 years later, this electrical effect evolved into the development of a multitude of bio-electrochemical systems providing all kinds of services like wastewater treatment, electricity generation or chemical recovery. The Plant Microbial Fuel Cell (Plant-MFC) offers in-situ electricity production with living plants and bacteria. This unique combination was just invented 6 years ago and is already scaled-up to 25 square meters. The last 4 years a multidisciplinary research team explored the Plant-MFC in an EU research project.
Exciting discoveries and great technological development took place over the last few years. New research questions came up and opportunities were identified to improve the system in the future. By bringing scientists, companies and entrepreneurs together we expect to bring PlantPower from the lab into the real world. The Plant-MFC is promising from a technical, environmental and economic perspective. The design criteria for the future are defined; but still development on several issues is needed.
Besides the fundamental research, scaling-up the technology is the next challenge. Especially wetlands offer the opportunity to produce electricity on a large scale. World-wide 800,000,000 ha wetland are present, however they are often under pressure due to our need of arable land for food, feed or chemicals. Here the Plant-MFC can be a solution since Plant-MFCs can be combined with nature and in that sense make nature preservation economically feasible. This 2nd international PlantPower symposium will show exiting results of the EU PlantPower consortium and other researchers
Microbial solar cells: applying photosynthetic and electrochemically active organisms
Microbial solar cells (MSCs) are recently developed technologies utilizing solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs, in an effort to identify the most promising systems as well as the bottlenecks and potential solutions towards „real life. MSC application. We give an outlook on future applications based on the intrinsic advantages of MSCs, showcasing specifically how these living energy systems can facilitate the development of an electricity-producing green roof.This is a "Post-Print" accepted manuscript, which has been published in
"Trends in Biotechnology".
This version is distributed under the Creative Commons Attribution 3.0 Netherlands License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Please cite this publication as follows:
2011 Trends in Biotechnology Microbial solar cells: applying photosynthetic and electrochemically active organisms. David P.B.T.B. Strik, Ruud A. Timmers, Marjolein Helder, Kirsten J.J. Steinbusch, Hubertus V.M. Hamelers, , Cees J.N. Buisman. Trends in Biotechnology 29 (1), 41-49
You can download the published version at:
http://dx.doi.org/10.1016/j.tibtech.2010.10.00
Recommended from our members
Nutrient Requirements, Leaf Tissue Standards, and New Options for Fertigation of Northern Highbush Blueberry
Northern highbush blueberry (Vaccinium corymbosum) is well adapted to acidic soils with low nutrient availability, but often requires regular applications of nitrogen (N) and other nutrients for profitable production. Typically, nutrients accumulate in the plant tissues following the same pattern as dry matter and are lost or removed by leaf senescence, pruning, fruit harvest, and root turnover. Leaf tissue testing is a useful tool for monitoring nutrient requirements in northern highbush blueberry, and standards for analysis have been updated for Oregon. Until recently, most commercial plantings of blueberry (Vaccinium sp.) were fertilized using granular fertilizers. However, many new fields are irrigated by drip and fertigated using liquid fertilizers. Suitable sources of liquid N fertilizer for blueberry include ammonium sulfate, ammonium thiosulfate, ammonium phosphate, urea, and urea sulfuric acid. Several growers are also applying humic acids to help improve root growth and are injecting sulfuric acid to reduce carbonates and bicarbonates in the irrigation water. Although only a single line of drip tubing is needed for adequate irrigation of northern highbush blueberry, two lines are often used to encourage a larger root system. The lines are often installed near the base of the plants initially and then repositioned 6–12 inches away once the root system develops. For better efficiency, N should be applied frequently by fertigation (e.g., weekly), beginning at budbreak, but discontinued at least 2 months before the end of the growing season. Applying N in late summer reduces flower bud development in northern highbush blueberry and may lead to late flushes of shoot growth vulnerable to freeze damage. The recommended N rates are higher for fertigation than for granular fertilizers during the first 2 years after planting but are similar to granular rates in the following years. More work is needed to develop fertigation programs for other nutrients and soil supplements in northern highbush blueberry.Keywords: fertilizer, humic acids, ammonium-nitrogen, soil pH, organic, Vaccinium corymbosu
Recommended from our members
Uptake and Partitioning of Nutrients in Blackberry and Raspberry and Evaluating Plant Nutrient Status for Accurate Assessment of Fertilizer Requirements
Raspberry and blackberry (Rubus sp.) plantings have a relatively low nutrient requirement compared with many other perennial fruit crops. Knowledge of annual accumulation of nutrients and periods of rapid uptake allows for better management of fertilization programs. Annual total nitrogen (N) accumulation in the aboveground plant ranged from 62 to 110 and 33 to 39 lb/acre in field-grown red raspberry (Rubus idaeus) and blackberry (Rubus ssp. rubus), respectively. Research on the fate of applied ¹⁵N (a naturally occurring istope of N) has shown that primocanes rely primarily on fertilizer N for growth, whereas floricane growth is highly dependent on stored N in the over-wintering primocanes, crown, and roots; from 30% to 40% of stored N was allocated to new growth. Plants receiving higher rates of N fertilizer took up more N, often leading to higher N concentrations in the tissues, including the fruit. Reallocation of N from senescing floricanes and primocane leaves to canes, crown, and roots has been documented. Accumulation of other macro- and micronutrients in plant parts usually preceded growth. Primocanes generally contained the highest concentration of most nutrients during the growing season, except calcium (Ca), copper (Cu), and zinc (Zn), which often were more concentrated in roots. Roots typically contained the highest concentration of all nutrients during winter dormancy. Nutrient partitioning varied considerably among elements due to different nutrient concentrations and requirements in each raspberry and blackberry plant part. This difference not only affected the proportion of each nutrient allocated to plant parts, but also the relative amount of each nutrient lost or removed during harvest, leaf senescence, and pruning. Macro- and micronutrient concentrations are similar for raspberry and blackberry fruit, resulting in a similar quantity of nutrient removed with each ton of fruit at harvest; however, yield may differ among cultivars and production systems. Nutrient removal in harvested red raspberry and blackberry fruit ranged from 11 to 18 lb/acre N, 10 to 19 lb/acre potassium (K), 2 to 4 lb/acre phosphorus (P), 1 to 2 lb/acre Ca, and 1 to 4 lb/acre magnesium (Mg). Pruning senescing floricanes in August led to greater plant nutrient losses than pruning in autumn. Primocane leaf nutrient status is often used in nutrient management programs. Leaf nutrient concentrations differ with primocane leaf sampling time and cultivar. In Oregon, the present recommended sampling time of late July to early August is acceptable for floricane-fruiting raspberry and blackberry types, and primocane-fruiting raspberry, but not for primocane-fruiting blackberry, where sampling leaves on primocane branches during the green fruit stage is recommended. Presently published leaf tissue standards appear to be too high for K in primocane-fruiting raspberry and blackberry, which is not surprising since the primocanes are producing fruit at the time of sampling and fruit contain a substantial amount of K.This is the publisher’s final pdf. The published article is copyrighted by the American Society for Horticultural Science and can be found at: http://horttech.ashspublications.org/Keywords: leaf tissue analysis, nutrient removal, organic, Rubus, fertilization, nitroge
A thin layer of activated carbon deposited on polyurethane cube leads to new conductive bioanode for (plant) microbial fuel cell
Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.</p
Recommended from our members
Weed Management, Training, and Irrigation Practices for Organic Production of Trailing Blackberry: III. Accumulation and Removal of Aboveground Biomass, Carbon, and Nutrients
Relatively little is known about aboveground nutrient content of organic blackberry, and there is no published work on total carbon (C) content. Treatment effects on biomass, C, and nutrient content, accumulation, and removal were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system that was machine harvested for the processed market. Treatments included two irrigation options (no irrigation after harvest and continuous summer irrigation), three weed management strategies (weed mat, hand-weeded, and nonweeded), and two primocane training times (August and February) in two cultivars (Black Diamond and Marion). Floricanes comprised an average of 45% of the total aboveground plant dry biomass, while primocanes and fruit comprised 30% and 25%, respectively. Depending on the treatment, the total aboveground dry biomass accumulation over the course of the season was 5.0–6.5 t·ha⁻¹ per year, while C stock of the planting was an estimated 0.4–1.1 t·ha⁻¹ in late winter. Carbon accounted for ≈50% of the dry biomass of each aboveground plant part, including primocanes, floricanes, and fruit. Weed management had the largest impact on plant biomass and nutrient content. No weed control reduced aboveground dry biomass, the content of nutrients in the primocanes, floricanes, and fruit, and the annual accumulation of dry biomass and nutrients, whereas use of weed mat resulted in the most dry biomass and nutrient content. Nutrient accumulation was similar between the cultivars, although February-trained ‘Marion’ plants had a greater removal of most nutrients in 2014 than the year prior. The amount of nitrogen (N) removed in the fruit was 22, 18, and 12 kg·ha⁻¹ for weed mat, hand-weeded, and nonweeded plots, respectively, in 2013. In 2014, ‘Marion’ and ‘Black Diamond’ differed in N removed in harvested fruit when grown with weed mat at 18 and 24 kg·ha⁻¹, respectively, whereas there was no cultivar effect when plants were grown in hand-weeded or nonweeded plots. Plots with weed mat tended to have the most nutrients removed through harvested fruit in both years. In 2014, N removal from August-trained ‘Marion’ was 5 kg·ha⁻¹ N less than the other training time and cultivar combinations. Plants that were irrigated throughout the summer accumulated more dry biomass, N, potassium (K), magnesium (Mg), sulfur (S), boron (B), and copper in one or both years than those that received no irrigation after fruit harvest. The irrigation treatment had inconsistent effects on nutrient content of each individual plant part between the two years. Removal of nutrients was often higher than what was applied through fertilization, especially for N, K, and B, which would eventually lead to depletion of those nutrients in the planting
Recommended from our members
Weed Management Practices for Organic Production of Trailing Blackberry, II. Accumulation and Loss of Biomass and Nutrients
A study was conducted in western Oregon to assess the impact of cultivar and weed management strategy on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer. The study was conducted in trailing blackberry (Rubus L. subgenus Rubus Watson) planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, Marion and Black Diamond, each with either no weed control after the first year after planting or with weeds managed by hand-weeding or the use of weed mat. Each treatment was amended with organically approved fertilizers at pre-plant and was drip-fertigated with fish emulsion each spring. Most primocane leaf nutrient concentrations were within the range recommended for blackberry. However, leaf nitrogen (N) was low in ‘Black Diamond’, especially when grown without weed control, whereas leaf boron (B) was low in all treatments. In many cases, leaf nutrient concentrations were affected by cultivar and weed management in both the primocanes and the floricanes. The concentration of several nutrients in the fruit differed between cultivars, including calcium (Ca), magnesium (Mg), sulfur (S), B, and zinc (Zn), but only fruit Ca was affected by weed management and only in ‘Marion’. In this case, fruit Ca was higher when the cultivar was grown with weed mat than with hand-weeding or no weeding. Total biomass production of primocanes increased from an average of 0.3 t·ha⁻¹ dry weight (DW) during the first year after planting to 2.0 t·ha⁻¹ DW the next year. Plants were first cropped the third year after planting and gained an additional 3.3 t·ha⁻¹ DW in total aboveground biomass (primocanes, floricanes, and fruit) by the end of the third season. Fruit DW averaged 1.4 t·ha⁻¹ in non-weeded plots, 1.9 t·ha⁻¹ in hand-weeded plots, and 2.3 t·ha⁻¹ in weed mat plots. Biomass of senesced floricanes (removed after harvest) averaged 3.2 t·ha⁻¹ DW and was similar between cultivars and among the weed management treatments. ‘Marion’ primocanes accumulated a higher content of N, phosphorus (P), potassium(K), Mg, S, iron (Fe), B, copper (Cu), and aluminum (Al) than in ‘Black Diamond’. Weeds, however, reduced nutrient accumulation in the primocanes in both cultivars, and accumulation of nutrients was greater in the floricanes than in the previous year’s primocanes. Total nutrient content declined from June to August in the floricanes, primarily through fruit removal at harvest and senescence of the floricanes after harvest. Depending on the cultivar and weed management strategy, nutrient loss from the fruit and floricanes averaged 34 to 79 kg·ha⁻¹ of N, 5 to 12 kg·ha⁻¹ of P, 36 to 84 kg·ha⁻¹ of K, 23 to 61 kg·ha⁻¹ of Ca, 5 to 15 kg·ha⁻¹ of Mg, 2 to 5 kg·ha⁻¹ of S, 380 to 810 g·ha⁻¹ of Fe, 70 to 300 g·ha⁻¹ of B, 15 to 36 g·ha⁻¹ of Cu, 610 to 1350 g·ha⁻¹ of manganese (Mn), 10 to 260 g·ha⁻¹ of Zn, and 410 to 950 g·ha⁻¹ of Al. Overall, plants generally accumulated (and lost) the most biomass and nutrients with weed mat and the least with no weed control.This is the publisher’s final pdf. The published article is copyrighted by the American Society for Horticultural Science and can be found at: http://hortsci.ashspublications.org/.Keywords: Tissue nutrient status weed control, Organic fertilizer, Rubus, Landscape fabri
Recommended from our members
Response of Blackberry Cultivars to Fertilizer Source during Establishment in an Organic Fresh Market Production System
Blackberry (Rubus ssp. Rubus) cultivars, three trailing types (Marion, Black Diamond, and Obsidian) and one semierect type (Triple Crown), were studied for their response to different types of fertilizer from 2011–12, at a certified organic, grower collaborator site located in Jefferson, OR. Plants were fertilized at a target rate of 50 lb/acre nitrogen (N) each spring using three different sources: 1) a liquid fish and molasses blend (4N–0P–1.7K); 2) pelletized soy (Glycine max) meal (8N–0.4P–1.7K); and 3) pelletized, processed poultry litter (4N–1.3P–2.5K). Plants were drip irrigated, and weeds were managed using a polypropylene, permeable landscape fabric (weed mat). Plant responses were greatly affected by cultivar, whereas the effects of fertilizer type were relatively minor. ‘Triple Crown’ produced the greatest yield in both years, whereas ‘Black Diamond’ and ‘Marion’ had the lowest yield in 2011 and 2012, respectively. ‘Triple Crown’ fruit had the highest percent soluble solids and were the least firm in 2011, whereas ‘Marion’ fruit were the least firm in 2012. Harvest date, within year, affected the fruit quality variables measured in all cultivars. Most soil nutrient levels were within the recommended range for all fertilizer treatments, except for boron (B), which declined to deficient levels in the second year. Fertilizer type had no effect on soil nutrient levels other than fertilization with the fish and molasses blend product increased soil potassium and sodium. Soil nutrient levels were affected by cultivar but varied by year for many nutrients. Primocane leaf tissue nutrient concentrations were above or within recommended standards for most nutrients, except for magnesium (Mg), calcium (Ca), and B, which, depending on the cultivar, were below standards. Over the 2-year study, the blackberry cultivars responded similarly to the three types of organic fertilizer. However, the cost of N varied from 5.35/lb for the pelletized soy meal, and $2.54/lb for the pelletized, processed poultry litter. Supplemental fertilization with B, Mg, and Ca would be required with each fertilizer studied to maintain recommended soil fertility levels
- …