8 research outputs found

    MEDIADORES DE DIÁLOGO EM TEMPOS DE POLARIZAÇÃO: UMA REFLEXÃO TEOLÓGICO-PASTORAL A PARTIR DE LUCAS 24,13-35

    Get PDF
    Este artigo faz uma reflexão a respeito da crise de diálogo instalada na sociedade atual, em meio à polarização generalizada e aos demais obstáculos que dificultam e, com frequência, impedem a inter-relação proveitosa de indivíduos e grupos. O presente trabalho parte da definição do conceito de diálogo no contexto das relações humanas e adentra a esfera social, considerando os diversos desafios que se apresentam na construção de um ambiente propício ao intercâmbio saudável de ideias. Nesse sentido, o papel dos mediadores de diálogo é destacado como sendo de grande importância. Por fim, o artigo procura, por meio das contribuições da Teologia, extrair e aplicar pastoralmente lições e princípios do exemplo de Jesus Cristo como mediador da conversa entre os discípulos do caminho de Emaús, conforme a narrativa de Lucas 24,13-35

    Worldwide Disparities in Recovery of Cardiac Testing 1 Year Into COVID-19

    Full text link
    BACKGROUND The extent to which health care systems have adapted to the COVID-19 pandemic to provide necessary cardiac diagnostic services is unknown.OBJECTIVES The aim of this study was to determine the impact of the pandemic on cardiac testing practices, volumes and types of diagnostic services, and perceived psychological stress to health care providers worldwide.METHODS The International Atomic Energy Agency conducted a worldwide survey assessing alterations from baseline in cardiovascular diagnostic care at the pandemic's onset and 1 year later. Multivariable regression was used to determine factors associated with procedure volume recovery.RESULTS Surveys were submitted from 669 centers in 107 countries. Worldwide reduction in cardiac procedure volumes of 64% from March 2019 to April 2020 recovered by April 2021 in high- and upper middle-income countries (recovery rates of 108% and 99%) but remained depressed in lower middle- and low-income countries (46% and 30% recovery). Although stress testing was used 12% less frequently in 2021 than in 2019, coronary computed tomographic angiography was used 14% more, a trend also seen for other advanced cardiac imaging modalities (positron emission tomography and magnetic resonance; 22%-25% increases). Pandemic-related psychological stress was estimated to have affected nearly 40% of staff, impacting patient care at 78% of sites. In multivariable regression, only lower-income status and physicians' psychological stress were significant in predicting recovery of cardiac testing.CONCLUSIONS Cardiac diagnostic testing has yet to recover to prepandemic levels in lower-income countries. Worldwide, the decrease in standard stress testing is offset by greater use of advanced cardiac imaging modalities. Pandemic-related psychological stress among providers is widespread and associated with poor recovery of cardiac testing. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s\sqrt{s} = 13 TeV

    Full text link
    International audienceThe strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s\sqrt{s} = 13 TeV

    Full text link
    The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s\sqrt{s} = 13 TeV

    Full text link
    International audienceThe strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s\sqrt{s} = 13 TeV

    Full text link
    International audienceThe strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s\sqrt{s} = 13 TeV

    Full text link
    International audienceThe strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics

    Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s= \sqrt{s}= 13 TeV

    Full text link
    The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The Wc production cross section and the cross section ratio Rc±=σ(W++cˉ)/σ(W+c) R_\mathrm{c}^{\pm} = \sigma(\mathrm{W^{+}}\,+\,\bar{\mathrm{c}})/\sigma(\mathrm{W^{-}}\,+\,\mathrm{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc± R_\mathrm{c}^{\pm} . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb1^{-1} collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±R^\pm_\text{c} = σ\sigma(W+^++cˉ\bar{\text{c}})/σ\sigma(W^-+c\text{c}) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±R^\pm_\text{c}. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics
    corecore