23 research outputs found

    Estimulação elétrica neuromuscular de média freqüência (russa) em cães com atrofia muscular induzida Medium frequency neuromuscular electrical stimulation (russian) in dogs with induced muscle atrophy

    No full text
    A estimulação elétrica neuromuscular (EENM) de média freqüência (Russa) ou de Kotz pode ser empregada para a recuperação de massa muscular em animais apresentando atrofia muscular por desuso. Assim, o objetivo deste trabalho foi empregar a EENM de média freqüência no quadríceps femoral de cães com atrofia muscular induzida, avaliando-se a ocorrência de ganho de massa. Foram utilizados oito cães em dois grupos denominados de GI ou controle e de GII ou tratado. Para a indução da atrofia muscular, a articulação fêmoro-tíbio-patelar esquerda foi imobilizada por 30 dias. Após 48 horas da remoção, foi realizada a EENM nos cães do grupo II, três vezes por semana, com intervalo de 48 horas cada sessão, pelo período de 60 dias. Foram avaliadas a mensuração da perimetria da coxa, da goniometria do joelho, as enzimas creatina-quinase (CK) e morfometria das fibras musculares em cortes transversais do músculo vasto lateral, colhido mediante a biópsia muscular. A EENM foi empregada no músculo quadríceps femoral numa freqüência de 2.500Hz, largura de pulso de 50% e relação de tempo on/off de 1:2. Não houve diferença significativa quanto aos valores de perimetria da coxa e a atividade da enzima CK entre os grupos I e II. Na goniometria, houve diminuição significativa (P<0,05) da amplitude articular após a remoção do aparelho de fixação externa somente nos animais do grupo II, em comparação a com tempo zero. Quanto à morfometria das fibras do músculo vasto lateral, foram notados valores maiores de área das fibras no grupo Tratado, em relação ao Controle (P<0,05), no dia 90, e, no grupo Tratado, entre os dias zero e 90. A EENM de média freqüência ocasiona hipertrofia do músculo vasto lateral em cães após a atrofia muscular induzida.<br>The medium frequency neuromuscular electrical stimulation (NMES) (Russa) or Kotz is designed for recuperation of muscle mass in dogs with muscular atrophy in disuse. This study aims to utilize medium frequency NMES on the femoral quadriceps of dogs with induced muscular atrophy and evaluate the occurrence of gain in mass. Eight dogs in two groups denominated GI, or control, and GII, or treated were used. For the induction of muscular atrophy, the left femoral-tibial-patellar joint was immobilized for 30 days. NMES treatment began 48 hours after the removal of the immobilization device on dogs from group II and was carried out three times per week, with an interval of 48 hours between each session, during 60 days. The following parameters were measured: thigh perimeter, goniometry of the knee, creatine kinase (CK) enzymes and morphometry of the muscular fibers in transversal cuts of the vastus lateralis muscle, collected through a muscular biopsy. EENM was utilized on the femoral quadriceps at a frequency of 2500 Hz, with pulse duration of 50%, and the time on/off was at a proportion of 1:2. There was no significant difference between the thigh perimeter and the activity of enzyme CK between groups I and II. As for the goniometry a significant increase (P<0,05) was observed among 0 and 30 days after the immobilization in group II. As for the morphometry of the fibers of the vastus lateralis, a significant increase (P<0,05) was observed in the transversal area of the treated group on the 90th day when compared with that observed at the time of immobilization and among the groups, group II presented a greater transversal area (P<0.05) on the 90th day. The medium frequency NMES brings about a hypertrophy of the vastus lateralis muscle in dogs after induced muscular atrophy

    Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in 139 fb1^{-1} of proton–proton collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    International audienceA search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino (χ~10)(\tilde{\chi }^0_1) is reported. It exploits LHC proton–proton collision data at a centre-of-mass energy s=13\sqrt{s} = 13 TeV with an integrated luminosity of 139 fb1^{-1} collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing b-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless χ~10.\tilde{\chi }^0_1. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to bbˉχ~10,ttˉχ~10b\bar{b}\tilde{\chi }^0_1,t\bar{t}\tilde{\chi }^0_1 and $t\bar{b}\tilde{\chi }^-_1/\bar{t}b\tilde{\chi }^+_1.

    Search for pair production of third-generation leptoquarks decaying into a bottom quark and a τ\tau -lepton with the ATLAS detector

    No full text
    International audienceA search for pair-produced scalar or vector leptoquarks decaying into a b-quark and a τ\tau -lepton is presented using the full LHC Run 2 (2015–2018) data sample of 139 fb1^{-1} collected with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of s=13\sqrt{s} =13 TeV. Events in which at least one τ\tau -lepton decays hadronically are considered, and multivariate discriminants are used to extract the signals. No significant deviations from the Standard Model expectation are observed and 95% confidence-level upper limits on the production cross-section are derived as a function of leptoquark mass and branching ratio B\mathcal {B} into a τ\tau -lepton and b-quark. For scalar leptoquarks, masses below 1460 GeV are excluded assuming B=100\mathcal {B}=100%, while for vector leptoquarks the corresponding limit is 1650 GeV (1910 GeV) in the minimal-coupling (Yang–Mills) scenario

    Luminosity determination in pppp collisions at s=13\sqrt{s}=13 TeV using the ATLAS detector at the LHC

    Get PDF
    The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1\hbox {fb}^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017–2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1\hbox {pb}^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}
    corecore