1,500 research outputs found

    1/N1/N Expansion of Two-Dimensional Models in the Scaling Region

    Full text link
    The main technical and conceptual features of the lattice 1/N1/N expansion in the scaling region are discussed in the context of a two-parameter two-dimensional spin model interpolating between CPN1CP^{N-1} and O(2N)O(2N) σ\sigma models, with standard and improved lattice actions. We show how to perform the asymptotic expansion of effective propagators for small values of the mass gap and how to employ this result in the evaluation of physical quantities in the scaling regime. The lattice renormalization group β\beta function is constructed explicitly and exactly to O(1/N)O({1/N}).Comment: 6 pages, report no. IFUP-TH 49/9

    A solvable twisted one-plaquette model

    Full text link
    We solve a hot twisted Eguchi-Kawai model with only timelike plaquettes in the deconfined phase, by computing the quadratic quantum fluctuations around the classical vacuum. The solution of the model has some novel features: the eigenvalues of the time-like link variable are separated in L bunches, if L is the number of links of the original lattice in the time direction, and each bunch obeys a Wigner semicircular distribution of eigenvalues. This solution becomes unstable at a critical value of the coupling constant, where it is argued that a condensation of classical solutions takes place. This can be inferred by comparison with the heat-kernel model in the hamiltonian limit, and the related Douglas-Kazakov phase transition in QCD2. As a byproduct of our solution, we can reproduce the dependence of the coupling constant from the parameter describing the asymmetry of the lattice, in agreement with previous results by Karsch.Comment: Minor corrections; final version to appear on IJMPA. 22 pages, Latex, 2 (small) figures included with eps

    Analytic results in 2+1-dimensional Finite Temperature LGT

    Get PDF
    In a 2+1-dimensional pure LGT at finite temperature the critical coupling for the deconfinement transition scales as βc(nt)=Jcnt+a1\beta_c(n_t) = J_c n_t + a_1, where ntn_t is the number of links in the ``time-like'' direction of the symmetric lattice. We study the effective action for the Polyakov loop obtained by neglecting the space-like plaquettes, and we are able to compute analytically in this context the coefficient a1a_1 for any SU(N) gauge group; the value of JcJ_c is instead obtained from the effective action by means of (improved) mean field techniques. Both coefficients have already been calculated in the large N limit in a previous paper. The results are in very good agreement with the existing Monte Carlo simulations. This fact supports the conjecture that, in the 2+1-dimensional theory, space-like plaquettes have little influence on the dynamics of the Polyakov loops in the deconfined phase.Comment: 15 pages, Latex, 2 figures included with eps

    An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry -Summary of the Formulation-

    Full text link
    We propose a lattice field theory formulation which overcomes some fundamental difficulties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.Comment: 14 pages, Lattice2017 Proceeding

    Twisted N=2 exact SUSY on the lattice for BF and Wess-Zumino

    Full text link
    We formulate exact supersymmetric models on a lattice. We introduce noncommutativity to ensure the Leibniz rule. With the help of superspace formalism, we give supertransformations which keep the N=2 twisted SUSY algebra exactly. The action is given as a product of (anti)chiral superfields on the lattice. We present BF and Wess-Zumino models as explicit examples of our formulation. Both models have exact N=2 twisted SUSY in 2 dimensional space at a finite lattice spacing. In component fields, the action has supercharge exact form.Comment: 3 pages, 2 figures, talk presented by I. Kanamori at Lattice2004(Theory), Fermilab, 21-26 June 200

    An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry

    Full text link
    We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedom on the lattice corresponds to 2d2^d degrees of freedom in the continuum, but all these doublers have (in the case of fermions) the same chirality and can be either identified, thus removing the degeneracy, or, in some theories with extended supersymmetry, identified with different members of the same supermultiplet. 2) The derivative operator, defined on the lattice as a suitable periodic function of the lattice momentum, is an addittive and conserved quantity, thus assuring that the Leibnitz rule is satisfied. This implies that the product of two fields on the lattice is replaced by a non-local "star product" which is however in general non-associative. Associativity of the "star product" poses strong restrictions on the form of the lattice derivative operator (which becomes the inverse gudermannian function of the lattice momentum) and has the consequence that the degrees of freedom of the lattice theory and of the continuum theory are in one-to-one correspondence, so that the two theories are eventually equivalent. Regularization of the ultraviolet divergences on the lattice is not associated to the lattice spacing, which does not act as a regulator, but may be obtained by a one parameter deformation of the lattice derivative, thus preserving the lattice structure even in the limit of infinite momentum cutoff. However this regularization breaks gauge invariance and a gauge invariant regularization within the lattice formulation is still lacking.Comment: 68 pages, 7 figure
    corecore