4 research outputs found

    MICROSTRUCTURAL CHANGES UNDER ISOTHERMAL AGING AND THEIR INFLUENCE ON THERMAL FATIGUE RELIABILITY FOR TIN-LEAD AND LEAD-FREE SOLDER JOINTS, INCLUDING MICROSTRUCTURAL CHANGES UNDER ISOTHERMAL AGING IN MIXED SOLDER JOINTS

    Get PDF
    Most electronics companies have transitioned to lead-free processes, both to comply with government legislation and to avoid issues related to mixing of tin-lead and lead-free metallurgies. However, exemptions from lead-free legislation have been granted for certain products, especially those intended for high-reliability applications. One major concern with these exempt products is that, during assembly or rework, lead-free components will have to be used due to the unavailability of tin-lead components. This will result in the mixing of tin-lead and lead-free metallurgies. The mixing of metallurgies can induce new reliability concerns. This study is focused on mixed solder joints formed by attaching lead-free components with tin-lead paste. Solder interconnect reliability is influenced by the environmental imposed load, solder material properties and the microstructure formed between the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminals, board pad plating and solder materials. These metallurgies react to form the microstructure of a solder joint. Microstructure of a solder joint continuously evolves and affects solder joint properties. A fundamental understanding on the microstructure is required to analyze the changes occurring in a solder joint with time and temperature and make predictions on solder joint reliability under thermal loading conditions. This dissertation determines key microstructural features present in SnPb, lead-free and mixed solder joints. Changes in the microstructural features were determined for SnPb, lead-free and mixed solder joints exposed to isothermal aging conditions. The effect of microstructural changes on reliability was determined by conducting thermal fatigue reliability tests for SnPb and lead-free solder joints. Whereas, for mixed solder joints, hypotheses has been determined based on microstructural analysis on their thermal fatigue performance compared to SnPb joints. This dissertation doesn't include the effect of microstructural changes on the reliability of mixed solder joints. This dissertation doesn't include the reliability tests for mixed solder joints. Two microstructural features namely, intermetallic compounds (IMC) and Pb phase were characterized for SnPb, lead-free and mixed solder joints. IMCs are formed at the solder to pad metallization interface and in the bulk solder. It was determined that reaction between Sn3.0Ag0.5Cu solder and Ni/Au component side metallization result in interfacial IMCs consisting of Ni3Sn4 IMC in the as-reflowed stage and IMCs such as (NiCu)3Sn4, (Cu,Ni)6Sn5 and (Au,Ni)Sn4 after thermal aging of 350 hours at 125ÂșC. With pad metallization of ImAg, ImSn and OSP, IMCs such as Cu6Sn5 are formed after reflow followed by formation of a new Cu3Sn IMC phase after thermal aging of 350 hours at 125ÂșC. Cu6Sn5 and Ag3Sn IMC were found distributed in bulk solder joints in the as-reflowed and aged (125ÂșC for 100, 350 and 1000 hrs) solder joint. This dissertation demonstrated that under thermal cycling, intergranular crack propagates between Sn grains in the bulk solder and Cu6Sn5 IMCs present at Sn grain boundaries in the bulk solder influence crack propagation. It was demonstrated that isothermal aging for 350 hrs at 125ÂșC causes coarsening of Cu6Sn5 IMC particles in the bulk solder which results in a 50% reduction in number of Cu6Sn5 IMC particles in the bulk solder, thus promoting the crack to propagate faster along the grain boundary. This dissertation determined that isothermal aging for 350 hrs at 125ÂșC would cause a 25% reduction in characteristic life for lead-free solder joints due to the changes associated with Cu6Sn5 IMC particles. In conventional SnPb solder joints Pb phase present in the bulk solder coarsens as a function of time and temperature and influences thermal fatigue reliability. Due to the presence of Pb in mixed solder joint, this dissertation determined the extent of coarsening in mixed solder joints compared with SnPb joints. It was determined that mixed solder joints are not prone to Pb phase coarsening under aging for 350 hrs at 125ÂșC as opposed to SnPb solder joints and therefore would have better thermal fatigue performance compared to SnPb joint under these conditions. This dissertation demonstrated that the presence of Pb in mixed solder results in a 30 to 40% lower IMC thickness compared to Pb-free and SnPb solder joints by being present at the interface as a diffusion barrier between Ni and Sn for IMC formation. Presence of Pb has been known to act as diffusion barrier for SnPb solder joints

    Copper wire bonding

    No full text
    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and recommendations on the bond process, bond–pad metallurgies, and appropriate reliability tests for copper wire-bonded electronic components. In summary, this book: Introduces copper wire bonding technologies Presents copper wire bonding processes Discusses copper wire bonding metallurgies Covers recent advancements in copper wire bonding including the bonding process, equipment changes, bond–pad materials and surface finishes Covers the reliability tests and concerns Covers the current implementation of copper wire bonding in the electronics industry  Features 120 figures and tables Copper Wire Bonding is an essential reference for industry professionals seeking detailed information on all facets of copper wire bonding technology

    Copper Wire Bonding

    No full text
    XXVI, 235 p. 104 illus., 20 illus. in color.onlin
    corecore