2,343 research outputs found

    Finite-Size Scaling Exponents in the Dicke Model

    Full text link
    We consider the finite-size corrections in the Dicke model and determine the scaling exponents at the critical point for several quantities such as the ground state energy or the gap. Therefore, we use the Holstein-Primakoff representation of the angular momentum and introduce a nonlinear transformation to diagonalize the Hamiltonian in the normal phase. As already observed in several systems, these corrections turn out to be singular at the transition point and thus lead to nontrivial exponents. We show that for the atomic observables, these exponents are the same as in the Lipkin-Meshkov-Glick model, in agreement with numerical results. We also investigate the behavior of the order parameter related to the radiation mode and show that it is driven by the same scaling variable as the atomic one.Comment: 4 pages, published versio

    Mycoplasma Mastitis in Dairy Cattle

    Get PDF
    Mastitis is defined as inflammation of the mammary gland, usually due to microbial infection. Many organisms have been known to cause mastitis including bacteria, fungi, and yeast. Mastitis is the most economically important disease of the dairy industry, the condition has been estimated to cause as much as two billion dollars in lost income for United States dairy producers at a cost of $181 per cow per year. The biggest losses are due to lowered production, but discarded milk, drugs, veterinary costs, and premature culling also contribute to the losses. More than 130 different microorganisms have been isolated from the mammary gland of the bovine with the majority of infections due to staphylococci, streptococci, and coliforms. However, mycoplasmas have begun to cause significant problems in some dairies. The first reported cases of mycoplasma mastitis were in Europe in 1960. Since that time it has been found all around the world, including the United States. Traditionally, California was most affected, but the disease has now become a problem across the entire country

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Detection of Complex Networks Modularity by Dynamical Clustering

    Full text link
    Based on cluster de-synchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN){\cal O}(KN) on a generic graph with NN nodes and KK links.Comment: 5 pages, 2 figures. Version accepted for publication on PRE Rapid Communications: figures changed and text adde

    ORGANIZATIONAL CYNICISM.

    Get PDF
    What is the nature of the extremely negative attitudes expressed by so many employees toward their organizations? To respond to this question, we introduce the concept of organizational cynicism. We review the literature from several disciplines on this concept and suggest that organizational cynicism is an attitude composed of beliefs, affect, and behavioral tendencies toward an organization. Following our review and conceptualization, we derive implications of this concept and propose a research agenda for organizational cynicis

    Preservation of Positivity by Dynamical Coarse-Graining

    Full text link
    We compare different quantum Master equations for the time evolution of the reduced density matrix. The widely applied secular approximation (rotating wave approximation) applied in combination with the Born-Markov approximation generates a Lindblad type master equation ensuring for completely positive and stable evolution and is typically well applicable for optical baths. For phonon baths however, the secular approximation is expected to be invalid. The usual Markovian master equation does not generally preserve positivity of the density matrix. As a solution we propose a coarse-graining approach with a dynamically adapted coarse graining time scale. For some simple examples we demonstrate that this preserves the accuracy of the integro-differential Born equation. For large times we analytically show that the secular approximation master equation is recovered. The method can in principle be extended to systems with a dynamically changing system Hamiltonian, which is of special interest for adiabatic quantum computation. We give some numerical examples for the spin-boson model of cases where a spin system thermalizes rapidly, and other examples where thermalization is not reached.Comment: 18 pages, 7 figures, reviewers suggestions included and tightened presentation; accepted for publication in PR

    A Method to Find Community Structures Based on Information Centrality

    Full text link
    Community structures are an important feature of many social, biological and technological networks. Here we study a variation on the method for detecting such communities proposed by Girvan and Newman and based on the idea of using centrality measures to define the community boundaries (M. Girvan and M. E. J. Newman, Community structure in social and biological networks Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)). We develop an algorithm of hierarchical clustering that consists in finding and removing iteratively the edge with the highest information centrality. We test the algorithm on computer generated and real-world networks whose community structure is already known or has been studied by means of other methods. We show that our algorithm, although it runs to completion in a time O(n^4), is very effective especially when the communities are very mixed and hardly detectable by the other methods.Comment: 13 pages, 13 figures. Final version accepted for publication in Physical Review

    Quantum transfer matrix method for one-dimensional disordered electronic systems

    Full text link
    We develop a novel quantum transfer matrix method to study thermodynamic properties of one-dimensional (1D) disordered electronic systems. It is shown that the partition function can be expressed as a product of 2Ă—22\times2 local transfer matrices. We demonstrate this method by applying it to the 1D disordered Anderson model. Thermodynamic quantities of this model are calculated and discussed.Comment: 7 pages, 10 figure
    • …
    corecore