23,521 research outputs found

    Gerald Bard Tjoflat: A Profile

    Get PDF

    Living in Interesting Times: President Obama and the Rebirth of the Labor Movement

    Get PDF
    Legislation has been introduced in the United States that will allow workers to form unions without secret ballot voting among prospective members. This legislation, in its current form, is the most radical change in Federal law governing union recognition in its history. While passage of the legislation is far from certain, it has generated much discussion and argument, most of it polemical. This article examines the issue from a more academic perspective, reviewing the history of organizing and how management practices have developed that effectively use the current election process as a tool to resist organizing efforts, and the effect the legislation might have upon those practices

    On Local Regret

    Full text link
    Online learning aims to perform nearly as well as the best hypothesis in hindsight. For some hypothesis classes, though, even finding the best hypothesis offline is challenging. In such offline cases, local search techniques are often employed and only local optimality guaranteed. For online decision-making with such hypothesis classes, we introduce local regret, a generalization of regret that aims to perform nearly as well as only nearby hypotheses. We then present a general algorithm to minimize local regret with arbitrary locality graphs. We also show how the graph structure can be exploited to drastically speed learning. These algorithms are then demonstrated on a diverse set of online problems: online disjunct learning, online Max-SAT, and online decision tree learning.Comment: This is the longer version of the same-titled paper appearing in the Proceedings of the Twenty-Ninth International Conference on Machine Learning (ICML), 201

    Young people and crime

    Get PDF

    Analysis and Optimization of Deep Counterfactual Value Networks

    Full text link
    Recently a strong poker-playing algorithm called DeepStack was published, which is able to find an approximate Nash equilibrium during gameplay by using heuristic values of future states predicted by deep neural networks. This paper analyzes new ways of encoding the inputs and outputs of DeepStack's deep counterfactual value networks based on traditional abstraction techniques, as well as an unabstracted encoding, which was able to increase the network's accuracy.Comment: Long version of publication appearing at KI 2018: The 41st German Conference on Artificial Intelligence (http://dx.doi.org/10.1007/978-3-030-00111-7_26). Corrected typo in titl

    Chorusing, synchrony, and the evolutionary functions of rhythm

    No full text
    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201
    • …
    corecore