2 research outputs found
Effect of simulated microgravity on the antidiabetic properties of wheatgrass (Triticum aestivum) in streptozotocin-induced diabetic rats
Abstract Microgravity affects plant growth and content. A three-dimensional clinostat was used at 4 rotations/min to rotate the seeds of Triticum aestivum cultivar (Ammon) in three dimensions for 7 days, following which the antioxidant activities of ethanolic extracts were evaluated using both nitric oxide- and hydrogen peroxide-scavenging activities. The antidiabetic activities of ethanolic extracts were evaluated by measuring the concentration of plasma glucose, insulin, C peptide, and glycated hemoglobin (HbA1c); determining the number of β cells in the pancreatic islets; and performing the glucose tolerance test. Furthermore, the effects of the ethanolic extracts on the lipid profile and liver function were estimated. After rats were sacrificed, their pancreases were isolated and used for histopathological processing. The results indicated that the antioxidant potential and antioxidant metabolite content were significantly increased under microgravity conditions in comparison to those under normal gravity conditions. Rats treated with an extract of wheatgrass (T. aestivum) germinated over a period of 6–10 days under microgravity (WGM) showed a significant reduction in the levels of serum glucose, HbA1C, urea, creatinine, aspartate aminotransferase and alanine aminotransferase, and insulin resistance compared to rats treated with an extract of wheatgrass germinated under gravity. Additionally, the total cholesterol and low-density lipoprotein cholesterol levels were significantly decreased. In contrast, high-density lipoprotein cholesterol, C-peptide, and insulin levels rose significantly after treatment with T. aestivum germinated under microgravity. WGM is a promising potential diabetic treatment without side effects with a low manufacturing cost
Adult multisystem inflammatory syndrome in a patient who recovered from COVID-19 postvaccination
Multisystem inflammatory syndrome in children has become a recognised syndrome, whereas a parallel syndrome in adults, multisystem inflammatory syndrome in adults (MIS-A), has not been well defined. Most cases occur several weeks following confirmed or suspected SARS-CoV-2 infection, but none have been reported in association with SARS-CoV-2 vaccines. Here we describe the case of a 22-year-old man, who received the inactivated SARS-CoV-2 vaccine 6 weeks following a mild COVID-19 infection. He presented after his second dose of the vaccine with a clinical picture of a multisystem inflammatory syndrome-like illness. Additionally, there was laboratory evidence of acute inflammation. The patient’s condition markedly improved after initiation of steroids. Whether the vaccine augmented an already-primed immunity from the infection and contributed to the occurrence of MIS-A is difficult to prove. Understanding the pathogenesis of this condition will shed light on this question and entail major implications on treatment and prevention