221,724 research outputs found

    Yang-Mills condensate dark energy coupled with matter and radiation

    Get PDF
    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t)\rho_y(t) is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift z(0.30.5)z\simeq (0.3\sim 0.5). Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state wyw_y of the Yang-Mills condensate can cross over -1 around z2z\sim 2, and takes on a current value 1.1\simeq -1.1. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.Comment: 24 pages, 18 figure

    Analytic Spectra of CMB Anisotropies and Polarization Generated by Relic Gravitational Waves with Modification due to Neutrino Free-Streaming

    Full text link
    We present an analytical calculation of the spectra of CMB anisotropies and polarizations generated by relic gravitational waves (RGWs). As a substantial extension to the previous studies, three new ingredients are included in this work. Firstly, the analytic ClTTC_l^{TT} and ClTEC_l^{TE} are given; especially the latter can be useful to extract signal of RGWs from the observed data in the zero multipole method. Secondly, a fitting formula of the decaying factor on small scales is given, coming from the visibility function around the photon decoupling. Thirdly, the impacts by the neutrino free-streaming (NFS) is examined, a process that occurred in the early universe and leaves observable imprints on CMB via RGWs. It is found that the analytic ClTTC_l^{TT} and ClTEC_l^{TE} have profiles agreeing with the numeric ones, except that ClTTC^{TT}_l in a range l10l \le 10 and the 1st1^{st} trough of ClTEC_l^{TE} around l75l \sim 75 have some deviations. With the new damping factor, the analytic ClEEC^{EE}_l and ClBBC^{BB}_l match with the numeric ones with the maximum errors only 3\sim 3% up to the first three peaks for l600l\le 600, improving the previous studies substantially. The correspondence of the positions of peaks of ClXXC^{XX}_l and those of RGWs are also demonstrated explicitly. We also find that NFS reduces the amplitudes of ClXXC^{XX}_l by (20(20% \sim 35%) for l(100600)l\simeq(100\sim 600) and shifts slightly their peaks to smaller angles. Detailed analyses show that the zero multipoles l0l_0, where ClTEC_l^{TE} crosses 0, are shifted to larger values by NFS. This shifting effect is as important as those causedby different inflation models and different baryon fractions.Comment: 17 pages, 7 figures. accepted by PR

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Accelerating Universe from Extra Spatial Dimension

    Full text link
    We present a simple higher dimensional FRW type of model where the acceleration is apparently caused by the presence of the extra dimensions. Assuming an ansatz in the form of the deceleration parameter we get a class of solutions some of which shows the desirable feature of dimensional reduction as well as reasonably good physical properties of matter. Interestingly we do not have to invoke an extraneous scalar field or a cosmological constant to account for this acceleration. One argues that the terms containing the higher dimensional metric coefficients produces an extra negative pressure that apparently drives the inflation of the 4D space with an accelerating phase. It is further found that in line with the physical requirements our model admits of a decelerating phase in the early era along with an accelerating phase at present.Further the models asymptotically mimic a steady state type of universe although it starts from a big type of singularity. Correspondence to Wesson's induced matter theory is also briefly discussed and in line with it it is argued that the terms containing the higher dimensional metric coefficients apparently creates a negative pressure which drives the inflation of the 3-space with an accelerating phase.Comment: 0

    Longitudinal LASSO: Jointly Learning Features and Temporal Contingency for Outcome Prediction

    Full text link
    Longitudinal analysis is important in many disciplines, such as the study of behavioral transitions in social science. Only very recently, feature selection has drawn adequate attention in the context of longitudinal modeling. Standard techniques, such as generalized estimating equations, have been modified to select features by imposing sparsity-inducing regularizers. However, they do not explicitly model how a dependent variable relies on features measured at proximal time points. Recent graphical Granger modeling can select features in lagged time points but ignores the temporal correlations within an individual's repeated measurements. We propose an approach to automatically and simultaneously determine both the relevant features and the relevant temporal points that impact the current outcome of the dependent variable. Meanwhile, the proposed model takes into account the non-{\em i.i.d} nature of the data by estimating the within-individual correlations. This approach decomposes model parameters into a summation of two components and imposes separate block-wise LASSO penalties to each component when building a linear model in terms of the past τ\tau measurements of features. One component is used to select features whereas the other is used to select temporal contingent points. An accelerated gradient descent algorithm is developed to efficiently solve the related optimization problem with detailed convergence analysis and asymptotic analysis. Computational results on both synthetic and real world problems demonstrate the superior performance of the proposed approach over existing techniques.Comment: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 201

    Quantum broadcast communication

    Get PDF
    Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just consider a simple broadcast communication task in quantum scenario, which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger state to realize a task that the central party broadcasts his secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver who share each of their authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, which the central party can broadcast the secret to any subset of the legal receivers
    corecore