4 research outputs found

    Glioma stem cells but not bulk glioma cells upregulate IL-6 secretion in microglia/brain macrophages via toll-like receptor 4 signaling

    Get PDF
    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-)GL261 cells. In IL-6(-/-)mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context

    Actionable molecular biomarkers in primary brain tumors

    No full text
    Recent genome-wide studies of malignancies of the central nervous system (CNS) have revolutionized our understanding of the biology of these tumors. This newly gained knowledge provides a wealth of opportunity for biomarker-driven clinical research. To date, however, only few of the available molecular markers truly influence clinical decision-making and treatment. The most widely validated markers in neuro-oncology presently are: (i) MGMT promoter methylation as a prognostic and predictive marker in glioblastoma; (ii) codeletion of 1p and 19q differentiating oligodendrogliomas from astrocytomas; (iii) IDH1/2 mutations; and (iv) select pathway-associated mutations. This article focuses on currently impactful biomarkers in adult and pediatric brain cancers and it provides a perspective on the direction of research in this field

    Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline

    No full text
    The invasiveness of malignant gliomas is one of the major obstacles in glioma therapy and the reason for the poor survival of patients. Glioma cells infiltrate into the brain parenchyma and thereby escape surgical resection. Glioma associated microglia/macrophages support glioma infiltration into the brain parenchyma by increased expression and activation of extracellular matrix degrading proteases such as matrix-metalloprotease 2, matrix-metalloprotease 9 and membrane-type 1 matrix metalloprotease. In this work we demonstrate that, matrix-metalloprotease 9 is predominantly expressed by glioma associated microglia/macrophages in mouse and human glioma tissue but not by the glioma cells. Supernatant from glioma cells induced the expression of matrix-metalloprotease 9 in cultured microglial cells. Using mice deficient for different Toll-like receptors we identified Toll-like receptor 2/6 as the signalling pathway for the glioma induced upregulation of microglial matrix-metalloprotease 9. Also in an experimental mouse glioma model, Toll-like receptor 2 deficiency attenuated the upregulation of microglial matrix-metalloprotease 9. Moreover, glioma supernatant triggered an upregulation of Toll-like receptor 2 expression in microglia. Both, the upregulation of matrix-metalloprotease 9 and Toll-like receptor 2 were attenuated by the antibiotic minocycline and a p38 mitogen activated protein kinase antagonist in vitro. Minocycline also extended the survival rate of glioma bearing mice when given to the drinking water. Thus glioma cells change the phenotype of glioma associated microglia/macrophages in a complex fashion using Toll-like receptor 2 as an important signalling pathway and minocycline further proved to be a potential candidate for adjuvant glioma therapy

    Intracellular glycine receptor function facilitates glioma formation in vivo

    No full text
    The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors accumulate the neurotransmitter glycine, we studied expression and function of glycine receptors (GlyR) in glioma cells. Human brain tumor biopsies selectively expressed GlyR subunits with nuclear import signal (NLS, {alpha}1 and {alpha}3). The mouse glioma cell line GL261 expressed GlyR {alpha}1, and knock-down of {alpha}1 protein expression impaired self-renewal capacity and tumorigenicity of GL261 glioma cells as evidenced by the neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore show that the pronounced tumorigenic effect of GlyR {alpha}1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR {alpha}1 and {alpha}3 loops rescued self-renewal capacity of GlyR {alpha}1 knock-down cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as novel potential targets for brain tumor therapies
    corecore