17 research outputs found
Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal
Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed
No Evidence for a Trade-Off between Reproductive Investment and Immunity in a Rodent
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6†litter size â€8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (nâ„8) and small litter size (nâ€6) (Experiment II) and manipulated large (11â13) and small litter size (2â3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival
The glutamate agonist NMDA blocks gonadal regression and enhances antibody response to an immune challenge in Siberian hamsters (Phodopus sungorus)
Seasonal variation in behavior and physiology, including changes in immune function, are common. This variability is elicited by changes in photoperiod and often covaries with fluctuations in both energy reserves and reproductive state. It is unclear, however, whether changes in either variable alone drive seasonal changes in immunity. We investigated the relative contributions of reproduction and energy balance to changes in immune function. To accomplish this, we uncoupled seasonal changes in reproduction from those related to energy balance via daily injections of N-methyl-D-Aspartate (NMDA) in Siberian hamsters (Phodopus sungorus). NMDA is a glutamatergic agonist that blocks short-day induced gonadal regression while leaving short-day declines in body mass unaffected. In Experiment 1, we examined the effect of differing doses of NMDA on testosterone production as a proxy for NMDA effects on reproduction; a dose-dependent rise in testosterone was observed. In Experiment 2, animals were maintained on long or short days and received daily injections of NMDA. After eight weeks all animals underwent a humoral immune challenge. Short-day animals receiving daily injections of NMDA maintained long-day-like gonads, however contrary to our predictions, no trade-off between reproduction or energy balance and immune function was observed. Unexpectedly, NMDA treatment increased immunoglobulin levels in all groups, suggesting NMDA may provide an immunomodulatory signal, presumably through actions on peripheral glutamate receptors. These results support a previous finding that NMDA blocks reproductive regression. In addition, these findings demonstrate a general immunoenhancing effect of NMDA that appears independent of changes in reproductive or energetic state of the animal