418 research outputs found

    Wegner-Wilson loops in string nets

    Full text link
    We study the Wegner-Wilson loops in the string-net model of Levin and Wen in the presence of a string tension. The latter is responsible for a phase transition from a topological deconfined phase (weak tension) to a trivial confined phase (strong tension). We analyze the behavior of all Wegner-Wilson loops in both limiting cases for an arbitrary input theory of the string-net model. Using a fluxon picture, we compute perturbatively the first contributions to a perimeter law in the topological phase as a function of the quantum dimensions. In the trivial phase, we find that Wegner-Wilson loops obey a modified area law, in agreement with a recent mean-field approach.Comment: 5 pages, 3 figures, published versio

    Kynurenine 3-Monooxygenase Inhibition in Blood Ameliorates Neurodegeneration

    Get PDF
    SummaryMetabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases

    Effect of Reynolds number and lithium cation insertion on titanium anodization

    Get PDF
    This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tube-tops, which is related to an increase of the photocurrent in the photoelectrochemical water splitting. Besides, the photogenerated electron-hole pairs are facilitated by Li+ intercalation. Finally, this work confirms that there is a synergistic effect between Re and Li+ intercalation

    Tau Reduction Does Not Prevent Motor Deficits in Two Mouse Models of Parkinson's Disease

    Get PDF
    Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau+/+, Tau+/– and Tau–/– backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition

    Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development

    Get PDF
    OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation

    Evidence for Cognitive Impairment in Mastocytosis: Prevalence, Features and Correlations to Depression

    Get PDF
    Mastocytosis is a heterogeneous disease characterized by mast cells accumulation in one or more organs. We have reported that depression is frequent in mastocytosis, but although it was already described, little is known about the prevalence and features of cognitive impairment. Our objective was to describe the prevalence and features of cognitive impairment in a large cohort of patients with this rare disease (n = 57; mean age = 45) and to explore the relations between memory impairment and depression. Objective memory impairment was evaluated using the 3rd edition of the Clinical Memory scale of Wechsler. Depression symptoms were evaluated using the Hamilton Depression Rating Scale. Age and education levels were controlled for all patients. Patients with mastocytosis presented high levels of cognitive impairment (memory and/or attention) (n = 22; 38.6%). Cognitive impairment was moderate in 59% of the cases, concerned immediate auditory (41%) and working memory (73%) and was not associated to depression (p≥0.717). In conclusion, immediate auditory memory and attention impairment in mastocytosis are frequent, even in young individuals, and are not consecutive to depression. In mastocytosis, cognitive complaints call for complex neuropsychological assessment. Mild-moderate cognitive impairment and depression constitute two specific but somewhat independent syndromes in mastocytosis. These results suggest differential effects of mast-cell activity in the brain, on systems involved in emotionality and in cognition

    Conservation research in times of COVID-19 - the rescue of the northern white rhino

    Get PDF
    COVID-19 has changed the world at unprecedented pace. The measures imposed by governments across the globe for containing the pandemic have severely affected all facets of economy and society, including scientific progress. Сonservation research has not been exempt from these negative effects, which we here summarize for the BioRescue project, aiming at saving the northern white rhinoceros (Ceratotherium simum cottoni), an important Central African keystone species, of which only two female individuals are left. The development of advanced assisted reproduction and stem-cell technologies to achieve this goal involves experts across five continents. Maintaining international collaborations under conditions of national shut-down and travel restrictions poses major challenges. The associated ethical implications and consequences are particularly troublesome when it comes to research directed at protecting biological diversity – all the more in the light of increasing evidence that biodiversity and intact ecological habitats might limit the spread of novel pathogens
    corecore