273 research outputs found

    Atomic quantum dots coupled to BEC reservoirs

    Full text link
    We study the dynamics of an atomic quantum dot, i.e. a single atom in a tight optical trap which is coupled to a superfluid reservoir via laser transitions. Quantum interference between the collisional interactions and the laser induced coupling to the phase fluctuations of the condensate results in a tunable coupling of the dot to a dissipative phonon bath, allowing an essentially complete decoupling from the environment. Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-Boson model with ohmic coupling, which exhibits a dissipative phase transition and allows to directly measure atomic Luttinger parameters.Comment: 5 pages, 2 figures. Submitted version. For the particular 1D case and its relation with Kondo physics see cond-mat/021241

    Anomalous fluctuations in phases with a broken continuous symmetry

    Full text link
    It is shown that the Goldstone modes associated with a broken continuous symmetry lead to anomalously large fluctuations of the zero field order parameter at any temperature below T_c. In dimensions 2<d<4, the variance of the extensive spontaneous magnetization scales as L^4 with the system size L, independent of the order parameter dynamics. The anomalous scaling is a consequence of the 1/q^{4-d} divergence of the longitudinal susceptibility. For ground states in two dimensions with Goldstone modes vanishing linearly with momentum, the dynamical susceptibility contains a singular contribution (q^2-\omega^2/c^2)^{-1/2}. The dynamic structure factor thus exhibits a critical continuum above the undamped spin wave pole, which may be detected by neutron scattering in the N\'eel-phase of 2D quantum antiferromagnets.Comment: final version, minor change

    Backflow in a Fermi Liquid

    Full text link
    We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution at long distances is radial and proportional to 1/r^2. It is caused by the current induced density modulation first discussed by Landauer. The familiar 1/r^3 dipolar backflow obtained in linear response by Pines and Nozieres is only the next to leading term, whose strength is calculated here to all orders in the scattering. In the charged case the condition of perfect screening gives rise to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the friction force is due only to the leading contribution in the backflow while the dipolar term does not contribute.Comment: 4 pages, 1 postscript figure, uses ReVTeX and epsfig macro, submitted to Physical Review Letter

    Spectroscopy of Superfluid Pairing in Atomic Fermi Gases

    Full text link
    We study the dynamic structure factor for density and spin within the crossover from BCS superfluidity of atomic fermions to the Bose-Einstein condensation of molecules. Both structure factors are experimentally accessible via Bragg spectroscopy, and allow for the identification of the pairing mechanism: the spin structure factor allows for the determination of the two particle gap, while the collective sound mode in the density structure reveals the superfluid state.Comment: 4 pages, 3 figure

    Polaron to molecule transition in a strongly imbalanced Fermi gas

    Full text link
    A single down spin Fermion with an attractive, zero range interaction with a Fermi sea of up-spin Fermions forms a polaronic quasiparticle. The associated quasiparticle weight vanishes beyond a critical strength of the attractive interaction, where a many-body bound state is formed. From a variational wavefunction in the molecular limit, we determine the critical value for the polaron to molecule transition. The value agrees well with the diagrammatic Monte Carlo results of Prokof'ev and Svistunov and is consistent with recent rf-spectroscopy measurements of the quasiparticle weight by Schirotzek et. al. In addition, we calculate the contact coefficient of the strongly imbalanced gas, using the adiabatic theorem of Tan and discuss the implications of the polaron to molecule transition for the phase diagram of the attractive Fermi gas at finite imbalance.Comment: 10 pages, 4 figures, RevTex4, minor changes, references adde

    Exponential localization in one-dimensional quasiperiodic optical lattices

    Full text link
    We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre' model, and provide evidences on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on Anderson localization of a noninteracting Bose-Einstein condensate in a quasiperiodic optical lattice [G. Roati et al., Nature 453, 895 (2008)].Comment: 13 pages, 6 figure
    • …
    corecore