91 research outputs found

    Lipoproteins, not lipopolysaccharide, are the key mediators of the pro-inflammatory response elicited by heat-killed Brucella abortus.

    Get PDF
    Inflammation is a hallmark of brucellosis. Although Brucella abortus, one of the disease?s etiologic agents, possesses cytokine-stimulatory properties, the mechanism by which this bacterium triggers a proinflammatory response is not known. We examined the mechanism whereby heat-killed B. abortus (HKBA), as well as its LPS, induces production of inflammatory cytokines in monocytes/macrophages. Polymyxin B, a specific inhibitor of LPS activity, did not inhibit the production of TNF-- and IL-6-induced HKBA in the human monocytic cell line THP-1. HKBA induced the production of these cytokines in peritoneal macrophages of both C3H/HeJ and C3H/HeN mice, whereas B. abortus LPS only stimulated cells from C3H/HeN mice. Anti-TLR2 Ab, but not anti-TLR4 Ab, blocked HKBAmediated TNF-and IL-6 production in THP-1 cells. Because bacterial lipoproteins, a TLR2 ligand, have potent inherent stimulatory properties, we investigated the capacity of two B. abortus lipoproteins, outer membrane protein 19 (Omp19) and Omp16, to elicit a proinflammatory response. Lipidated (L)-Omp16 and L-Omp19, but not their unlipidated forms, induced the secretion of TNF-, IL-6, IL-10, and IL-12 in a time- and dose-dependent fashion. Preincubation of THP-1 cells with anti-TLR2 Ab blocked L-Omp19-mediated TNF-and IL-6 production. Together, these results entail a mechanism whereby B. abortus can stimulate cells from the innate immune system and induce cytokine-mediated inflammation in brucellosis. We submit that LPS is not the cause of inflammation in brucellosis; rather, lipoproteins of this organism trigger the production of proinflammatory cytokines, and TLR2 is involved in this process.Fil: Giambartolomei, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Zwerdling, Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Cassataro, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Bruno, Laura Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Philipp, Mario T.. University of Tulane; Estados Unido

    Similarity of chest X-ray and thermal imaging of focal pneumonia: a randomised proof of concept study at a large urban teaching hospital

    Get PDF
    OBJECTIVE: To assess the diagnostic accuracy of thermal imaging (TI) in the setting of focal consolidative pneumonia with chest X-ray (CXR) as the gold standard. SETTING: A large, 973-bed teaching hospital in Boston, Massachusetts. PARTICIPANTS: 47 patients enrolled, 15 in a training set, 32 in a test set. Age range 10 months to 82 years (median=50 years). MATERIALS AND METHODS: Subjects received CXR with subsequent TI within 4 hours of each other. CXR and TI were assessed in blinded random order. Presence of focal opacity (pneumonia) on CXR, the outcome parameter, was recorded. For TI, presence of area(s) of increased heat (pneumonia) was recorded. Fisher\u27s exact test was used to assess the significance of the correlations of positive findings in the same anatomical region. RESULTS: With TI compared with the CXR (the outcome parameter), sensitivity was 80.0% (95% CIs 29.9% to 98.9%), specificity was 57.7% (95% CI 37.2% to 76.0%). Positive predictive value of TI was 26.7% (95% CI 8.9% to 55.2%) and its negative predictive value was 93.8% (95% CI 67.7% to 99.7%). CONCLUSIONS: This feasibility study confirms proof of concept that chest TI is consistent with CXR in suggesting similarly localised focal pneumonia with high sensitivity and negative predictive value. Further investigation of TI as a point-of-care imaging modality is warranted

    Urban spaces, fragmented consciousness, and indecipherable meaning in Mrs Dalloway

    Get PDF
    This essay discusses the importance of urban spaces in Virginia Woolf's Mrs Dalloway, linking them to central themes in the novel (including the fragmented consciousness of the characters, and withheld - or only partially understood - meaning)

    Potential role of fibroblast-like synoviocytes in joint damage induced by Brucella abortus infection through production and induction of matrix metalloproteinases

    Get PDF
    Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.Fil: Scian, Romina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: de Simone, Emilio Adrian. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Catedra de Fisiologia Animal; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; ArgentinaFil: Vanzulli, Silvia I.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Baldi, Pablo Cesar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    An Oral Vaccine Based on U-Omp19 Induces Protection against B. abortus Mucosal Challenge by Inducing an Adaptive IL-17 Immune Response in Mice

    Get PDF
    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4+ T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity

    Deep-Sequencing Analysis of the Mouse Transcriptome Response to Infection with Brucella melitensis Strains of Differing Virulence

    Get PDF
    Brucella melitensis is an important zoonotic pathogen that causes brucellosis, a disease that affects sheep, cattle and occasionally humans. B. melitensis strain M5-90, a live attenuated vaccine cultured from B. melitensis strain M28, has been used as an effective tool in the control of brucellosis in goats and sheep in China. However, the molecular changes leading to attenuated virulence and pathogenicity in B. melitensis remain poorly understood. In this study we employed the Illumina Genome Analyzer platform to perform genome-wide digital gene expression (DGE) analysis of mouse peritoneal macrophage responses to B. melitensis infection. Many parallel changes in gene expression profiles were observed in M28- and M5-90-infected macrophages, suggesting that they employ similar survival strategies, notably the induction of anti-inflammatory and antiapoptotic factors. Moreover, 1019 differentially expressed macrophage transcripts were identified 4 h after infection with the different B. melitensis strains, and these differential transcripts notably identified genes involved in the lysosome and mitogen-activated protein kinase (MAPK) pathways. Further analysis employed gene ontology (GO) analysis: high-enrichment GOs identified endocytosis, inflammatory, apoptosis, and transport pathways. Path-Net and Signal-Net analysis highlighted the MAPK pathway as the key regulatory pathway. Moreover, the key differentially expressed genes of the significant pathways were apoptosis-related. These findings demonstrate previously unrecognized changes in gene transcription that are associated with B. melitensis infection of macrophages, and the central signaling pathways identified here merit further investigation. Our data provide new insights into the molecular attenuation mechanism of strain M5-90 and will facilitate the generation of new attenuated vaccine strains with enhanced efficacy
    corecore