875 research outputs found

    The Active Traveling Wave in the Cochlea

    Get PDF
    A sound stimulus entering the inner ear excites a deformation of the basilar membrane which travels along the cochlea towards the apex. It is well established that this wave-like disturbance is amplified by an active system. Recently, it has been proposed that the active system consists of a set of self-tuned critical oscillators which automatically operate at an oscillatory instability. Here, we show how the concepts of a traveling wave and of self-tuned critical oscillators can be combined to describe the nonlinear wave in the cochlea.Comment: 5 pages, 2 figure

    Benchmarking with Spine Tango: potentials and pitfalls

    Get PDF
    The newly released online statistics function of Spine Tango allows comparison of own data against the aggregated results of the data pool that all other participants generate. This comparison can be considered a very simple way of benchmarking, which means that the quality of what one organization does is compared with other similar organizations. The goal is to make changes towards better practice if benchmarking shows inferior results compared with the pool. There are, however, pitfalls in this simplified way of comparing data that can result in confounding. This means that important influential factors can make results appear better or worse than they are in reality and these factors can only be identified and neutralized in a multiple regression analysis performed by a statistical expert. Comparing input variables, confounding is less of a problem than comparing outcome variables. Therefore, the potentials and limitations of automated online comparisons need to be considered when interpreting the results of the benchmarking procedur

    On a Calculus-based Statistics Course for Life Science Students

    Get PDF
    The choice of pedagogy in statistics should take advantage of the quantitative capabilities and scientific background of the students. In this article, we propose a model for a statistics course that assumes student competency in calculus and a broadening knowledge in biology. We illustrate our methods and practices through examples from the curriculum

    Self-tuning to the Hopf bifurcation in fluctuating systems

    Full text link
    The problem of self-tuning a system to the Hopf bifurcation in the presence of noise and periodic external forcing is discussed. We find that the response of the system has a non-monotonic dependence on the noise-strength, and displays an amplified response which is more pronounced for weaker signals. The observed effect is to be distinguished from stochastic resonance. For the feedback we have studied, the unforced self-tuned Hopf oscillator in the presence of fluctuations exhibits sharp peaks in its spectrum. The implications of our general results are briefly discussed in the context of sound detection by the inner ear.Comment: 37 pages, 7 figures (8 figure files

    Strangeness Content in the Nucleon

    Get PDF
    I review recent studies of strangeness content in the nucleon pertaining to the flavor-singlet gA0g_A^0, the sˉs\bar{s}s matrix element and the strangeness electric and magnetic form factors GEs(q2)G_E^s(q^2) and GMs(q2)G_M^s(q^2), based on lattice QCD calculations. I shall also discuss the relevance of incorporating the strangeness content in nuclei in regard to strange baryon-antibaryon productions from proton-nucleus and nucleus-nucleus collisions at SPS and RHIC energies.Comment: 11 pages, 4 figures, Invited talk at V Int. Conf. on Strangeness in Quark Matter, Berkeley, CA, July 20--25, 200

    History of exotic Meson (4-quark) and Baryon (5-quark) States

    Full text link
    I briefly review the history of exotic meson (4-quark) and baryon (5-quark) states, which is rooted in the formalism of Regge pole and duality. There are robust model-independent predictions for the exchange of 4-quark (Baryonium) Regge trajectories in several processes, which are strongly supported by experiment. On the other hand the predictions for the spectroscopy of 4-quark resonances are based on specific QCD inspired models, with some experimental support. The corresponding predictions for the recently discovered exotic baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a topical review in J. Phys.

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic

    New data on OZI rule violation in bar{p}p annihilation at rest

    Full text link
    The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter

    Exploring the QCD landscape with high-energy nuclear collisions

    Full text link
    Quantum chromodynamics (QCD) phase diagram is usually plotted as temperature (T) versus the chemical potential associated with the conserved baryon number (\mu_{B}). Two fundamental properties of QCD, related to confinement and chiral symmetry, allows for two corresponding phase transitions when T and \mu_{B} are varied. Theoretically the phase diagram is explored through non-perturbative QCD calculations on lattice. The energy scale for the phase diagram (\Lambda_{QCD} ~ 200 MeV) is such that it can be explored experimentally by colliding nuclei at varying beam energies in the laboratory. In this paper we review some aspects of the QCD phase structure as explored through the experimental studies using high energy nuclear collisions. Specifically, we discuss three observations related to the formation of a strongly coupled plasma of quarks and gluons in the collisions, experimental search for the QCD critical point on the phase diagram and freeze-out properties of the hadronic phase.Comment: Submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas
    corecore