2,322 research outputs found
Black hole mergers in the universe
Mergers of black-hole binaries are expected to release large amounts of
energy in the form of gravitational radiation. However, binary evolution models
predict merger rates too low to be of observational interest. In this paper we
explore the possibility that black holes become members of close binaries via
dynamical interactions with other stars in dense stellar systems. In star
clusters, black holes become the most massive objects within a few tens of
millions of years; dynamical relaxation then causes them to sink to the cluster
core, where they form binaries. These black-hole binaries become more tightly
bound by superelastic encounters with other cluster members, and are ultimately
ejected from the cluster. The majority of escaping black-hole binaries have
orbital periods short enough and eccentricities high enough that the emission
of gravitational radiation causes them to coalesce within a few billion years.
We predict a black-hole merger rate of about per year per
cubic megaparsec, implying gravity wave detection rates substantially greater
than the corresponding rates from neutron star mergers. For the first
generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we
expect about one detection during the first two years of operation. For its
successor LIGO-II, the rate rises to roughly one detection per day. The
uncertainties in these numbers are large. Event rates may drop by about an
order of magnitude if the most massive clusters eject their black hole binaries
early in their evolution.Comment: 12 pages, ApJL in pres
Marketing strategies to utilise Central Otago's resources
Paper presented at the 48th New Zealand Grassland Association Conference, 3-6 November 1986, Alexandra.This paper provides an overview of trends in marketing at the national level and in regions
such as Central Otago.
The movement away from centrally co-ordinated marketing strategies and ihe increased
sophistication of marketing and processing are highlighted. Such developments have
implications for the structure of the agricultural and horticultural marketing systems. It is
suggested that there is a requirement for improved strategy development and planning by
individual firms. This can best be aided at the national level, by considering ways in which the
planning by individual firms can be improved. Several specific areas in which improvements
could be made are discussed
The solar siblings in the Gaia era
We perform realistic simulations of the Sun's birth cluster in order to
predict the current distribution of solar siblings in the Galaxy. We study the
possibility of finding the solar siblings in the Gaia catalogue by using only
positional and kinematic information. We find that the number of solar siblings
predicted to be observed by Gaia will be around 100 in the most optimistic
case, and that a phase space only search in the Gaia catalogue will be
extremely difficult. It is therefore mandatory to combine the chemical tagging
technique with phase space selection criteria in order to have any hope of
finding the solar siblings.Comment: To be published in the proceedings of the GREAT-ITN conference "The
Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", 1-5
December 2014, University of Barcelona, Spain, EAS Publications Series, eds
Nicholas Walton, Francesca Figueras, and Caroline Soubira
The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia
We use self-consistent numerical simulations of the evolution and disruption
of the Sun's birth cluster in the Milky Way potential to investigate the
present-day phase space distribution of the Sun's siblings. The simulations
include the gravitational N-body forces within the cluster and the effects of
stellar evolution on the cluster population. In addition the gravitational
forces due to the Milky Way potential are accounted for in a self-consistent
manner. Our aim is to understand how the astrometric and radial velocity data
from the Gaia mission can be used to pre-select solar sibling candidates. We
vary the initial conditions of the Sun's birth cluster, as well as the
parameters of the Galactic potential. We show that the disruption time-scales
of the cluster are insensitive to the details of the non-axisymmetric
components of the Milky Way model and we make predictions, averaged over the
different simulated possibilities, about the number of solar siblings that
should appear in surveys such as Gaia or GALAH. We find a large variety of
present-day phase space distributions of solar siblings, which depend on the
cluster initial conditions and the Milky Way model parameters. We show that
nevertheless robust predictions can be made about the location of the solar
siblings in the space of parallaxes (), proper motions () and
radial velocities (). By calculating the ratio of the number of
simulated solar siblings to that of the number of stars in a model Galactic
disk, we find that this ratio is above 0.5 in the region given by: mas, masyr, and kms. Selecting stars from this region should increase the probability
of success in identifying solar siblings through follow up observations
[Abridged].Comment: 13 pages, 7 figures. Accepted for publication in MNRA
Demand for wool by grade
The aims of the project were to examine the relationships between auction
prices of different types of wool, to identify categories of wool and to investigate substitution effects amongst wools. A modelling framework was developed which enabled these relationships to be analysed. While there are some clear avenues for further research, this study makes some useful first steps towards a conceptualisation of wool markets
The Sandwich algorithm for spatial equilibrium analysis
Recent advances in mathematical programming techniques have
made it possible to provide more realistic solutions to applied
economic problems. Although mathematical programming techniques are
widely used, the economic content of the solutions is often limited by
the assumptions imposed by the algorithms available. This report is
designed to demonstrate the increased flexibility which is currently
available for the solution of a wide range of spatial economic
problems.
Transportation and transhipment models have been widely used in
the analysis of the impact of policy changes on spatial activity,
Borrell & Zwart [l]; Beck, Rathbun and Abbott [2]. One of the major
shortcomings of such models has been an inability to model the impact
of more flexible pricing policies on regional supply and demand, while
maintaining the realistic non linearities which are associated with
processing and transportation costs. In this paper a simplified
version of the transhipment model developed by Borrell & Zwart [l] is
modified to incorporate regional supply response while at the same time
retaining complex processing and handling cost relationships.
This report outlines the general form of the spatial
equilibrium problem and some of the solution techniques available, in a
format easily understood by readers not conversant with operational
research techniques. Initially the problem is defined and solution
methods used in the past are then briefly described. The advantages
and disadvantages of these methods are outlined before showing how a
relatively new solution technique may be able to improve both the scope
and flexibility of the problems being solved
Planets in triple star systems--the case of HD188753
We consider the formation of the recently discovered ``hot Jupiter'' planet
orbiting the primary component of the triple star system HD188753. Although the
current outer orbit of the triple is too tight for a Jupiter-like planet to
have formed and migrated to its current location, the binary may have been much
wider in the past. We assume here that the planetary system formed in an open
star cluster, the dynamical evolution of which subsequently led to changes in
the system's orbital parameters and binary configuration. We calculate cross
sections for various scenarios that could have led to the multiple system
currently observed, and conclude that component A of HD188753 with its planet
were most likely formed in isolation to be swapped in a triple star system by a
dynamical encounter in an open star cluster. We estimate that within 500pc of
the Sun there are about 1200 planetary systems which, like Hd188753, have
orbital parameters unfavorable for forming planets but still having a planet,
making it quite possible that the HD188753 system was indeed formed by a
dynamical encounter in an open star cluster.Comment: ApJ Letters in pres
Monte-Carlo Simulations of Globular Cluster Evolution - I. Method and Test Calculations
We present a new parallel supercomputer implementation of the Monte-Carlo
method for simulating the dynamical evolution of globular star clusters. Our
method is based on a modified version of Henon's Monte-Carlo algorithm for
solving the Fokker-Planck equation. Our code allows us to follow the evolution
of a cluster containing up to 5x10^5 stars to core collapse in < 40 hours of
computing time. In this paper we present the results of test calculations for
clusters with equal-mass stars, starting from both Plummer and King model
initial conditions. We consider isolated as well as tidally truncated clusters.
Our results are compared to those obtained from approximate, self-similar
analytic solutions, from direct numerical integrations of the Fokker-Planck
equation, and from direct N-body integrations performed on a GRAPE-4
special-purpose computer with N=16384. In all cases we find excellent agreement
with other methods, establishing our new code as a robust tool for the
numerical study of globular cluster dynamics using a realistic number of stars.Comment: 35 pages, including 8 figures, submitted to ApJ. Revised versio
- …