2 research outputs found

    Multidimensional analyses of proinsulin peptide-specific regulatory T cells induced by tolerogenic dendritic cells

    No full text
    Induction of antigen-specific regulatory T cells (Tregs) in vivo is the holy grail of current immune-regulating therapies in autoimmune diseases, such as type 1 diabetes. Tolerogenic dendritic cells (tolDCs) generated from monocytes by a combined treatment with vitamin D and dexamethasone (marked by CD52hi and CD86lo expression) induce antigen-specific Tregs. We evaluated the phenotypes of these Tregs using high-dimensional mass cytometry to identify a surface-based T cell signature of tolerogenic modulation. Naïve CD4+ T cells were stimulated with tolDCs or mature inflammatory DCs pulsed with proinsulin peptide, after which the suppressive capacity, cytokine production and phenotype of stimulated T cells were analysed. TolDCs induced suppressive T cell lines that were dominated by a naïve phenotype (CD45RA+CCR7+). These naïve T cells, however, did not show suppressive capacity, but were arrested in their naïve status. T cell cultures stimulated by tolDC further contained memory-like (CD45RA-CCR7-) T cells expressing regulatory markers Lag-3, CD161 and ICOS. T cells expressing CD25lo or CD25hi were most prominent and suppressed CD4+ proliferation, while CD25hi Tregs also effectively supressed effector CD8+ T cells. We conclude that tolDCs induce antigen-specific Tregs with various phenotypes. This extends our earlier findings pointing to a functionally diverse pool of antigen-induced and specific Tregs and provides the basis for immune-monitoring in clinical trials with tolDC.Comp Graphics & Visualisatio

    Longitudinal Dynamics of Human B-Cell Response at the Single-Cell Level in Response to Tdap Vaccination

    No full text
    To mount an adequate immune response against pathogens, stepwise mutation and selection processes are crucial functions of the adaptive immune system. To better characterize a successful vaccination response, we performed longitudinal (days 0, 5, 7, 10, and 14 after Boostrix vaccination) analysis of the single-cell transcriptome as well as the B-cell receptor (BCR) repertoire (scBCR-rep) in plasma cells of an immunized donor and compared it with baseline B-cell characteristics as well as flow cytometry findings. Based on the flow cytometry knowledge and literature findings, we discriminated individual B-cell subsets in the transcriptomics data and traced over-time maturation of plasmablasts/plasma cells (PB/PCs) and identified the pathways associated with the plasma cell maturation. We observed that the repertoire in PB/PCs differed from the baseline B-cell repertoire e.g., regarding expansion of unique clones in post-vaccination visits, high usage of IGHG1 in expanded clones, increased class-switching events post-vaccination represented by clonotypes spanning multiple IGHC classes and positive selection of CDR3 sequences over time. Importantly, the Variable gene family-based clustering of BCRs represented a similar measure as the gene-based clustering, but certainly improved the clustering of BCRs, as BCRs from duplicated Variable gene families could be clustered together. Finally, we developed a query tool to dissect the immune response to the components of the Boostrix vaccine. Using this tool, we could identify the BCRs related to anti-tetanus and anti-pertussis toxoid BCRs. Collectively, we developed a bioinformatic workflow which allows description of the key features of an ongoing (longitudinal) immune response, such as activation of PB/PCs, Ig class switching, somatic hypermutation, and clonal expansion, all of which are hallmarks of antigen exposure, followed by mutation & selection processes.Pattern Recognition and Bioinformatic
    corecore