249 research outputs found

    Pediatric Acute Myeloid Leukemia

    Get PDF

    Limited sampling strategies for individualized BAX 855 prophylaxis in severe hemophilia A:in silico evaluation

    Get PDF
    ObjectiveLimited sampling strategies (LSS) lower the burden of pharmacokinetic (PK)-guided dosing, but an extensive evaluation of LSS for BAX 855 (Adynovi) is currently lacking. This study aimed to develop a LSS for BAX 855 and combine this with a LSS of a standard half-life (SHL) factor VIII (FVIII) concentrate in a clinical setting.MethodsIndividual PK parameters of BAX 855 were estimated for 10 000 virtual patients with severe hemophilia A using Monte Carlo simulations. Several LSS consisting of 2-6 samples were examined based on patient burden, bias and accuracy of clearance, elimination half-life, volume of distribution and trough levels at 72 h (C72). Analyses were performed separately for adults and children &lt;12 years.ResultsThe preferred LSS for BAX 855 consisted of three sampling points at 15-30 min, 48 h and 72 h for both adults (mean accuracy C72: 14.0% vs. 10.8% using six samples) and children (mean accuracy C72: 14.9% vs. 11.4% using six samples). The best strategy with two samples (peak, 48 h) resulted in an adequate, but lower accuracy than strategies with ≄3 samples (mean accuracy C72: 22.3%). The optimal combination of the LSS of SHL FVIII and BAX 855 led to six samples during four clinical visits.ConclusionThis in silico study has identified that two to three samples are necessary to estimate the individual PK of BAX-855 adequately. These samples can be collected in one or two clinical visits. When combining PK profiling of SHL FVIII and BAX 855, six samples during four clinical visits are needed.</p

    Does difference between label and actual potency of factor VIII concentrate affect pharmacokinetic-guided dosing of replacement therapy in haemophilia A?

    Get PDF
    BACKGROUND: To account for interindividual variability in the pharmacokinetics (PK) of factor concentrates, PK‐guided dosing is increasingly implemented in haemophilia patients. Calculations are based on provided label potency, but legislation allows a potency difference of ±20% between label and actual potency. It is unknown if these differences affect PK guidance. AIM: Explore the effects of potency differences on individual factor VIII (FVIII) PK parameters and the prediction of FVIII trough levels of dosing regimens. METHODS: We analyzed individual preoperative PK profiling data from severe and moderate haemophilia A patients included in the OPTI‐CLOT randomized controlled trial. Label and actual potency were compared, with data on potency provided by pharmaceutical companies. For both potencies, individual PK parameters were estimated and concentration‐time curves were constructed by nonlinear mixed‐effects modelling. Finally, we explored the effect of both the identified and the maximum legislated potency difference on predicted FVIII trough levels infused in a low and high dose regimen. RESULTS: In 45/50 included patients, actual potency was higher than its label potency. The median potency difference was 6.0% (range ‐9.2% to 18.4%) and resulted in varying individual PK parameter estimates but practically identical FVIII concentration‐time curves. As expected, predicted FVIII trough levels were linearly correlated to the actual dose. CONCLUSION: It is not necessary to take potency differences into account when applying PK guidance of FVIII concentrates in haemophilia A patients. However, when the patient is switched to another FVIII batch after PK‐guided dosing, trough levels may deviate ±20% from calculations based on label dose

    Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression

    Get PDF
    Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.</p

    t(2;11)(q33;q23) KMT2A/ABI2

    Get PDF
    Review on t(2;11)(q33;q23) with the gene fusion KMT2A/ABI
    • 

    corecore