4 research outputs found

    Study of plasma processes in afterglow by means of electron spin resonance

    Get PDF
    Contriburion is intended to summarize in a practically useful form the basic information about the detection of the gas phase atoms and free radicals by electron spin resonance spectroscopy (ESR) in gas discharge afterglow and in remote plasma reactors. This paper shows how ESR could be effectively used for the monitoring of relative and absolute concentrations of gas phase H.O,N atoms during the volume and awll recombination processes.Pomocí elektronové papraagnetické rezonance jsou studovány procesy objemové a stěnové rekombinace atomů N, O, a H. Je poukázáno na zajímavý efekt generace a rekombinace dvou různých izotopů N

    Microbatch under-oil salt screening of organic cations: single-crystal growth of active pharmaceutical ingredients

    Full text link
    Multicomponent solid forms of active pharmaceutical ingredients represent a modern method of tuning their physicochemical properties. Typically, salts are the most commonly used multicomponent solid form in the pharmaceutical industry. More than 38% are formulated as organic cations. Salt screening is an essential but demanding step when identifying the most appropriate formulation. The microbatch under-oil crystallization technique of proteins has been combined with the previously developed high-throughput vapour-diffusion screening for use as a novel method of primary salt screening of organic cations. The procedure allows the set up of about 100 crystallization experiments per 30 min. This requires between 17 and 564 mg of screened cationic active pharmaceutical ingredients, which were of moderate to very high water solublity. Five distinct organic salts, three of them diverse active pharmaceutical compounds or the other enantiomer thereof, in the form of chloride salts were tested. The screening was extremely successful; at least two new single-crystal structures could be obtained for each particular compound and many more salts as single crystals were formed compared with our previous vapour-diffusion method

    Microbatch under-oil salt screening of organic cations: single-crystal growth of active pharmaceutical ingredients

    No full text
    Multicomponent solid forms of active pharmaceutical ingredients represent a modern method of tuning their physicochemical properties. Typically, salts are the most commonly used multicomponent solid form in the pharmaceutical industry. More than 38% are formulated as organic cations. Salt screening is an essential but demanding step when identifying the most appropriate formulation. The microbatch under-oil crystallization technique of proteins has been combined with the previously developed high-throughput vapour-diffusion screening for use as a novel method of primary salt screening of organic cations. The procedure allows the set up of about 100 crystallization experiments per 30 min. This requires between 17 and 564 mg of screened cationic active pharmaceutical ingredients, which were of moderate to very high water solublity. Five distinct organic salts, three of them diverse active pharmaceutical compounds or the other enantiomer thereof, in the form of chloride salts were tested. The screening was extremely successful; at least two new single-crystal structures could be obtained for each particular compound and many more salts as single crystals were formed compared with our previous vapour-diffusion method
    corecore