107 research outputs found

    Quantum Garbled Circuits

    Get PDF
    We present a garbling scheme for quantum circuits, thus achieving a decomposable randomized encoding scheme for quantum computation. Specifically, we show how to compute an encoding of a given quantum circuit and quantum input, from which it is possible to derive the output of the computation and nothing else. In the classical setting, garbled circuits (and randomized encodings in general) are a versatile cryptographic tool with many applications such as secure multiparty computation, delegated computation, depth-reduction of cryptographic primitives, complexity lower-bounds, and more. However, a quantum analogue for garbling general circuits was not known prior to this work. We hope that our quantum randomized encoding scheme can similarly be useful for applications in quantum computing and cryptography. To illustrate the usefulness of quantum randomized encoding, we use it to design a conceptually-simple zero-knowledge (ZK) proof system for the complexity class QMA\mathbf{QMA}. Our protocol has the so-called ÎŁ\Sigma format with a single-bit challenge, and allows the inputs to be delayed to the last round. The only previously-known ZK ÎŁ\Sigma-protocol for QMA\mathbf{QMA} is due to Broadbent and Grilo (FOCS 2020), which does not have the aforementioned properties.Comment: 66 pages. Updated the erroneous claim from v1 about the complexity of information-theoretic QRE as matching the classical case. Added an application of QRE to zero-knowledge for QM

    Efficient Fully Homomorphic Encryption from (Standard) LWE

    Get PDF
    A fully homomorphic encryption (FHE) scheme allows anyone to transform an encryption of a message, m, into an encryption of any (efficient) function of that message, f(m), without knowing the secret key. We present a leveled FHE scheme that is based solely on the (standard) learning with errors (LWE) assumption. (Leveled FHE schemes are initialized with a bound on the maximal evaluation depth. However, this restriction can be removed by assuming “weak circular security.”) Applying known results on LWE, the security of our scheme is based on the worst-case hardness of “short vector problems” on arbitrary lattices. Our construction improves on previous works in two aspects: 1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new relinearization technique. In contrast, all previous schemes relied on complexity assumptions related to ideals in various rings. 2. We deviate from the “squashing paradigm” used in all previous works. We introduce a new dimension-modulus reduction technique, which shortens the ciphertexts and reduces the decryption complexity of our scheme, without introducing additional assumptions. Our scheme has very short ciphertexts, and we therefore use it to construct an asymptotically efficient LWE-based single-server private information retrieval (PIR) protocol. The communication complexity of our protocol (in the public-key model) is k·polylog(k)+log |DB| bits per single-bit query, in order to achieve security against 2k-time adversaries (based on the best known attacks against our underlying assumptions). Key words. cryptology, public-key encryption, fully homomorphic encryption, learning with errors, private information retrieva

    Brief Announcement: Zero-Knowledge Protocols for Search Problems

    Get PDF
    We consider natural ways to extend the notion of Zero-Knowledge (ZK) Proofs beyond decision problems. Specifically, we consider search problems, and define zero-knowledge proofs in this context as interactive protocols in which the prover can establish the correctness of a solution to a given instance without the verifier learning anything beyond the intended solution, even if it deviates from the protocol. The goal of this work is to initiate a study of Search Zero-Knowledge (search-ZK), the class of search problems for which such systems exist. This class trivially contains search problems where the validity of a solution can be efficiently verified (using a single message proof containing only the solution). A slightly less obvious, but still straightforward, way to obtain zero-knowledge proofs for search problems is to let the prover send a solution and prove in zero-knowledge that the instance-solution pair is valid. However, there may be other ways to obtain such zero-knowledge proofs, and they may be more advantageous. In fact, we prove that there are search problems for which the aforementioned approach fails, but still search zero-knowledge protocols exist. On the other hand, we show sufficient conditions for search problems under which some form of zero-knowledge can be obtained using the straightforward way

    Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security

    Get PDF
    We construct an LWE-based key-policy attribute-based encryption (ABE) scheme that supports attributes of unbounded polynomial length. Namely, the size of the public parameters is a fixed polynomial in the security parameter and a depth bound, and with these fixed length parameters, one can encrypt attributes of arbitrary length. Similarly, any polynomial size circuit that adheres to the depth bound can be used as the policy circuit regardless of its input length (recall that a depth d circuit can have as many as 2d inputs). This is in contrast to previous LWE-based schemes where the length of the public parameters has to grow linearly with the maximal attribute length. We prove that our scheme is semi-adaptively secure, namely, the adversary can choose the challenge attribute after seeing the public parameters (but before any decryption keys). Previous LWE-based constructions were only able to achieve selective security. (We stress that the “complexity leveraging” technique is not applicable for unbounded attributes). We believe that our techniques are of interest at least as much as our end result. Fundamentally, selective security and bounded attributes are both shortcomings that arise out of the current LWE proof techniques that program the challenge attributes into the public parameters. The LWE toolbox we develop in this work allows us to delay this programming. In a nutshell, the new tools include a way to generate an a-priori unbounded sequence of LWE matrices, and have fine-grained control over which trapdoor is embedded in each and every one of them, all with succinct representation.National Science Foundation (U.S.) (Award CNS-1350619)National Science Foundation (U.S.) (Grant CNS-1413964)United States-Israel Binational Science Foundation (Grant 712307

    Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE

    Get PDF
    Broadcast encryption remains one of the few remaining central cryptographic primitives that are not yet known to be achievable under a standard cryptographic assumption (excluding obfuscation-based constructions, see below). Furthermore, prior to this work, there were no known direct candidates for post-quantum-secure broadcast encryption. We propose a candidate ciphertext-policy attribute-based encryption (CP-ABE) scheme for circuits, where the ciphertext size depends only on the depth of the policy circuit (and not its size). This, in particular, gives us a Broadcast Encryption (BE) scheme where the size of the keys and ciphertexts have a poly-logarithmic dependence on the number of users. This goal was previously only known to be achievable assuming ideal multilinear maps (Boneh, Waters and Zhandry, Crypto 2014) or indistinguishability obfuscation (Boneh and Zhandry, Crypto 2014) and in a concurrent work from generic bilinear groups and the learning with errors (LWE) assumption (Agrawal and Yamada, Eurocrypt 2020). Our construction relies on techniques from lattice-based (and in particular LWE-based) cryptography. We analyze some attempts at cryptanalysis, but we are unable to provide a security proof

    Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP

    Get PDF
    We present a new tensoring technique for LWE-based fully homomorphic encryption. While in all previous works, the ciphertext noise grows quadratically (B \to B^2\cdot\poly(n)) with every multiplication (before ``refreshing\u27\u27), our noise only grows linearly (B \to B\cdot\poly(n)). We use this technique to construct a \emph{scale-invariant} fully homomorphic encryption scheme, whose properties only depend on the ratio between the modulus qq and the initial noise level BB, and not on their absolute values. Our scheme has a number of advantages over previous candidates: It uses the same modulus throughout the evaluation process (no need for ``modulus switching\u27\u27), and this modulus can take arbitrary form, including a power of 22 which carries obvious advantages for implementation. In addition, security can be \emph{classically} reduced to the worst-case hardness of the GapSVP problem (with quasi-polynomial approximation factor), whereas previous constructions could only exhibit a quantum reduction to GapSVP

    Separating Two-Round Secure Computation From Oblivious Transfer

    Get PDF
    We consider the question of minimizing the round complexity of protocols for secure multiparty computation (MPC) with security against an arbitrary number of semi-honest parties. Very recently, Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) constructed such 2-round MPC protocols from minimal assumptions. This was done by showing a round preserving reduction to the task of secure 2-party computation of the oblivious transfer functionality (OT). These constructions made a novel non-black-box use of the underlying OT protocol. The question remained whether this can be done by only making black-box use of 2-round OT. This is of theoretical and potentially also practical value as black-box use of primitives tends to lead to more efficient constructions. Our main result proves that such a black-box construction is impossible, namely that non-black-box use of OT is necessary. As a corollary, a similar separation holds when starting with any 2-party functionality other than OT. As a secondary contribution, we prove several additional results that further clarify the landscape of black-box MPC with minimal interaction. In particular, we complement the separation from 2-party functionalities by presenting a complete 4-party functionality, give evidence for the difficulty of ruling out a complete 3-party functionality and for the difficulty of ruling out black-box constructions of 3-round MPC from 2-round OT, and separate a relaxed "non-compact" variant of 2-party homomorphic secret sharing from 2-round OT

    On the Computational Hardness Needed for Quantum Cryptography

    Get PDF
    In the classical model of computation, it is well established that one-way functions (OWF) are minimal for computational cryptography: They are essential for almost any cryptographic application that cannot be realized with respect to computationally unbounded adversaries. In the quantum setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and Yamakawa 2022), and the question of whether such a minimal primitive exists remains open. We consider EFI pairs - efficiently samplable, statistically far but computationally indistinguishable pairs of (mixed) quantum states. Building on the work of Yan (2022), which shows equivalence between EFI pairs and statistical commitment schemes, we show that EFI pairs are necessary for a large class of quantum-cryptographic applications. Specifically, we construct EFI pairs from minimalistic versions of commitments schemes, oblivious transfer, and general secure multiparty computation, as well as from QCZK proofs from essentially any non-trivial language. We also construct quantum computational zero knowledge (QCZK) proofs for all of QIP from any EFI pair. This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that played by OWFs in the classical setting: they are simple to describe, essential, and also serve as a linchpin for demonstrating equivalence between primitives

    Lattice-Based Fully Dynamic Multi-Key FHE with Short Ciphertexts

    Get PDF
    We present a multi-key fully homomorphic encryption scheme that supports an unbounded number of homomorphic operations for an unbounded number of parties. Namely, it allows to perform arbitrarily many computational steps on inputs encrypted by an a-priori unbounded (polynomial) number of parties. Inputs from new parties can be introduced into the computation dynamically, so the final set of parties needs not be known ahead of time. Furthermore, the length of the ciphertexts, as well as the space complexity of an atomic homomorphic operation, grow only linearly with the current number of parties. Prior works either supported only an a-priori bounded number of parties (Lopez-Alt, Tromer and Vaikuntanthan, STOC \u2712), or only supported single-hop evaluation where all inputs need to be known before the computation starts (Clear and McGoldrick, Crypto \u2715, Mukherjee and Wichs, Eurocrypt \u2716). In all aforementioned works, the ciphertext length grew at least quadratically with the number of parties. Technically, our starting point is the LWE-based approach of previous works. Our result is achieved via a careful use of Gentry\u27s bootstrapping technique, tailored to the specific scheme. Our hardness assumption is that the scheme of Mukherjee and Wichs is circular secure (and thus bootstrappable). A leveled scheme can be achieved under standard LWE
    • …
    corecore