1,241 research outputs found

    Transport properties and the anisotropy of Ba_{1-x}K_xFe_2As_2 single crystals in normal and superconducting states

    Get PDF
    The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single crystals with T_c = 31 K were studied. Both in-plane and out-of plane resistivity was measured by modified Montgomery method. The in-plane resistivity for all studied samples, obtained in the course of the same synthesis, is almost the same, unlike to the out-of plane resistivity, which differ considerably. We have found that the resistivity anisotropy \gamma=\rho_c /\rho_{ab} is almost temperature independent and lies in the range 10-30 for different samples. This, probably, indicates on the extrinsic nature of high out-of-plane resistivity, which may appear due to the presence of the flat defects along Fe-As layers in the samples. This statement is supported by comparatively small effective mass anisotropy, obtained from the upper critical field measurements, and from the observation of the so-called "Friedel transition", which indicates on the existence of some disorder in the samples in c-direction.Comment: 5 pages, 5 figure

    Two Scenarios of the Quantum Critical Point

    Full text link
    Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state, related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different {\it topological} scenario of the QCP, associated with the emergence of bifurcation points in equation ϵ(p)=μ\epsilon(p)=\mu that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.Comment: 6 pages, added new discussion and 2 figure

    Mechanisms driving alteration of the Landau state in the vicinity of a second-order phase transition

    Full text link
    The rearrangement of the Fermi surface of a homogeneous Fermi system upon approach to a second-order phase transition is studied at zero temperature. The analysis begins with an investigation of solutions of the equation ϵ(p)=μ\epsilon(p)=\mu, a condition that ordinarily has the Fermi momentum pFp_F as a single root. The emergence of a bifurcation point in this equation is found to trigger a qualitative alteration of the Landau state, well before the collapse of the collective degree of freedom that is responsible for the second-order transition. The competition between mechanisms that drive rearrangement of the Landau quasiparticle distribution is explored, taking into account the feedback of the rearrangement on the spectrum of critical fluctuations. It is demonstrated that the transformation of the Landau state to a new ground state may be viewed as a first-order phase transition.Comment: 16 pages, 10 figure

    Nonlocal lattice fermion models on the 2d torus

    Get PDF
    Abelian fermion models described by the SLAC action are considered on a finite 2d lattice. It is shown that modification of these models by introducing additional Pauli - Villars regularization supresses nonlocal effects and provides agreement with the continuum results in vectorial U(1) models. In the case of chiral fermions the phase of the determinant differs from the continuum one.Comment: 16 pages, LaTeX, 5 eps figures, uses epsf.sty, rotate.st

    Normal state resistivity of Ba1x_{1-x}Kx_xFe2_2As2_2: evidence for multiband strong-coupling behavior

    Get PDF
    We present theoretical analysis of the normal state resistivity in multiband superconductors in the framework of Eliashberg theory. The results are compared with measurements of the temperature dependence of normal state resistivity of high-purity Ba0.68_{0.68}K0.32_{0.32}Fe2_{2}As2_{2} single crystals with the highest reported transition temperature TcT_c = 38.5 K. The experimental data demonstrate strong deviations from the Bloch-Gr\"{u}neisen behavior, namely the tendency to saturation of the resistivity at high temperatures. The observed behavior of the resistivity is explained within the two band scenario when the first band is strongly coupled and relatively clean, while the second band is weakly coupled and is characterized by much stronger impurity scattering.Comment: 4 pages, 3 figures, to be published in JETP Letters Vol.94, N

    Topological crossovers near a quantum critical point

    Full text link
    We study the temperature evolution of the single-particle spectrum ϵ(p)\epsilon(p) and quasiparticle momentum distribution n(p)n(p) of homogeneous strongly correlated Fermi systems beyond a point where the necessary condition for stability of the Landau state is violated, and the Fermi surface becomes multi-connected by virtue of a topological crossover. Attention is focused on the different non-Fermi-liquid temperature regimes experienced by a phase exhibiting a single additional hole pocket compared with the conventional Landau state. A critical experiment is proposed to elucidate the origin of NFL behavior in dense films of liquid 3^3He.Comment: 7 pages, 6 figure

    Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition

    Full text link
    The Fermi liquid approach is applied to the problem of spontaneous violation of the four-fold rotational point-group symmetry (C4C_4) in strongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is traced to the existence of a topological phase transition. This continuous transition is triggered when the Fermi line, driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishes and the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicated quantum critical point.Comment: 6 pages, 4 figure

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Adaptation of the Landau-Migdal Quasiparticle Pattern to Strongly Correlated Fermi Systems

    Full text link
    A quasiparticle pattern advanced in Landau's first article on Fermi liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.Comment: 26 pages, 14 figures. Dedicated to 100th anniversary of A.B.Migdal birthda

    ^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4

    Get PDF
    51^{51}V NMR studies on CaV2O4 single crystals and 17^{17}O NMR studies on 17^{17}O-enriched powder samples are reported. The temperature dependences of the 17^{17}O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field 51^{51}V NMR signal was observed at low temperatures (f \approx 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys. Rev.
    corecore