28 research outputs found

    Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resident macrophages (Kupffer cells, KCs) in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF) diet rich in monounsaturated fatty acids.</p> <p>Methods</p> <p>Male Wistar rats were fed either standard (SD) or high-fat (HF) diet for 4 weeks. Half of the animals were subjected to the acute GdCl<sub>3 </sub>treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl<sub>3</sub>.</p> <p>Results</p> <p>We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCĪµ activation and marked exacerbation of HF diet-induced hepatic insulin resistance.</p> <p>Conclusions</p> <p>We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.</p

    The Increased Activity of Liver Lysosomal Lipase in Nonalcoholic Fatty Liver Disease Contributes to the Development of Hepatic Insulin Resistance

    Get PDF
    We tested the hypothesis that TAG accumulation in the liver induced by short-term high-fat diet (HFD) in rats leads to the dysregulation of endogenous TAG degradation by lysosomal lipase (LIPA) via lysosomal pathway and is causally linked with the onset of hepatic insulin resistance. We found that LIPA could be translocated between qualitatively different depots (light and dense lysosomes). In contrast to dense lysosomal fraction, LIPA associated with light lysosomes exhibits high activity on both intracellular TAG and exogenous substrate and prandial- or diet-dependent regulation. On standard diet, LIPA activity was upregulated in fasted and downregulated in fed animals. In the HFD group, we demonstrated an increased TAG content, elevated LIPA activity, enhanced production of diacylglycerol, and the abolishment of prandial-dependent LIPA regulation in light lysosomal fraction. The impairment of insulin signalling and increased activation of PKCĪµ was found in liver of HFD-fed animals. Lipolysis of intracellular TAG, mediated by LIPA, is increased in steatosis probably due to the enhanced formation of phagolysosomes. Consequent overproduction of diacylglycerol may represent the causal link between HFD-induced hepatic TAG accumulation and hepatic insulin resistance via PKCĪµ activation

    Fatty Acid Signaling: The New Function of Intracellular Lipases

    No full text
    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive ā€œenergy conservesā€. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed

    The Opposite Effects of High-Sucrose and High-Fat Diet on Fatty Acid Oxidation and Very Low Density Lipoprotein Secretion in Rat Model of Metabolic Syndrome

    Get PDF
    Aims. To determine the effect of two different diets (high-sucrose (HS) and high-fat (HF)) on the main metabolic pathways potentially contributing to the development of steatosis: (1) activity of the liver lysosomal and heparin-releasable lipases; (2) fatty acid (FFA) oxidation; (3) FFA synthesis de novo; (4) VLDL output in vivo in a rat model of metabolic syndrome (MetS), hereditary hypertriglyceridemic (HHTg) rats fed HS or HF diets. Results. Both diets resulted in triacylglycerol (TAG) accumulation in the liver (HF > HS). The intracellular TAG lipolysis by lysosomal lipase was increased in both groups and positively correlated with the liver TAG content. Diet type significantly affected partitioning of intracellular TAG-derived fatty acids among FFA-utilizing metabolic pathways as HS feeding accentuated VLDL secretion and downregulated FFA oxidation while the HF diet had an entirely opposite effect. FFA de novo synthesis from glucose was significantly enhanced in the HS group (fed ā‰« fasted) while being completely eradicated in the HF group. Conclusions. We found that in rats prone to the development of MetS associated diseases dietary-induced steatosis is not simply a result of impaired TAG degradation but that it depends on other mechanisms (elevated FFA synthesis or attenuated VLDL secretion) that are specific according to diet composition

    Effect of Short-and Long-Term High-Fat Feeding on Autophagy Flux and Lysosomal Activity in Rat Liver

    No full text
    Summary Autophagy-lysosomal pathway is a cellular mechanism ensuring degradation of various macromolecules like proteins or triacylglycerols (TAG). Its disruption is related to many pathological states, including liver steatosis. We compared the effect of short-and long-established steatosis on the intensity of autophagy-lysosomal pathway in rat liver. The experiments were carried out on 3-month old Wistar rats fed standard (SD) or highfat diet for 2 (HF-2) or 10 (HF-10) weeks. HF diet administered animals accumulated an increased amount of TAG in the liver (HF-2ā†’HF-10). Autophagy flux was up-regulated in HF-2 group but nearly inhibited after 10 weeks of HF administration. The expression of autophagy related genes was up-regulated in HF-2 but normal in HF-10. In contrast, total activities of two lysosomal enzymes, lysosomal lipase (LAL) and acid phosphatase, were unaffected in HF-2 but significantly increased in HF-10 groups. mRNA expression of lysosomal enzymes was not affected by the diet. We conclude that in a state of metabolic unbalance (steatosis), autophagy machinery and lysosomal enzymes expression are regulated independently. The accumulation of TAG in the liver is associated with the increase of total LAL activity and protein expression. In contrast, the autophagy response is bi-phasic and after rapid increase it is significantly diminished. This may represent an adaptive mechanism that counteracts the excessive degradation of substrate, i.e. TAG, and eliminate over-production of potentially hazardous lipiddegradation intermediates

    The Increased Activity of Liver Lysosomal Lipase in Nonalcoholic Fatty Liver Disease Contributes to the Development of Hepatic Insulin Resistance

    No full text
    We tested the hypothesis that TAG accumulation in the liver induced by short-term high-fat diet (HFD) in rats leads to the dysregulation of endogenous TAG degradation by lysosomal lipase (LIPA) via lysosomal pathway and is causally linked with the onset of hepatic insulin resistance. We found that LIPA could be translocated between qualitatively different depots (light and dense lysosomes). In contrast to dense lysosomal fraction, LIPA associated with light lysosomes exhibits high activity on both intracellular TAG and exogenous substrate and prandial-or diet-dependent regulation. On standard diet, LIPA activity was upregulated in fasted and downregulated in fed animals. In the HFD group, we demonstrated an increased TAG content, elevated LIPA activity, enhanced production of diacylglycerol, and the abolishment of prandial-dependent LIPA regulation in light lysosomal fraction. The impairment of insulin signalling and increased activation of PKCĪµ was found in liver of HFD-fed animals. Lipolysis of intracellular TAG, mediated by LIPA, is increased in steatosis probably due to the enhanced formation of phagolysosomes. Consequent overproduction of diacylglycerol may represent the causal link between HFD-induced hepatic TAG accumulation and hepatic insulin resistance via PKCĪµ activation
    corecore