2 research outputs found
Presence of Protease Inhibitor 9 and Granzyme B in Healthy and Pathological Human Corneas
The aim of this study was to find out whether protease inhibitor 9 (PI-9) and granzyme B (GrB) molecules that contribute to immune response and the immunological privilege of various tissues are expressed in healthy and pathological human corneas. Using cryosections, cell imprints of control corneoscleral discs, we showed that PI-9 was expressed particularly in the endothelium, the superficial and suprabasal epithelium of healthy corneas, limbus, and conjunctiva. GrB was localized in healthy corneal and conjunctival epithelium, while the endothelium showed weak immunostaining. The expression of PI-6 and GrB was confirmed by qRT-PCR. Increased expression levels of the PI-9 and GrB genes were determined when the corneas were cultured with proinflammatory cytokines. Fluorescent and enzymatic immunohistochemistry of pathological corneal explants (corneal melting and herpes virus keratitis) showed pronounced PI-9, GrB, human leucocyte antigen (HLA)-DR, and leukocyte-common antigen (CD45) signals localized in multicellular stromal infiltrates and inflammatory cells scattered in the corneal stroma. We conclude that increased expression of the PI-9 and GrB proteins under pathological conditions and their upregulation in an inflammatory environment indicate their participation in immune response of the cornea during the inflammatory process
The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model
Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect