32 research outputs found

    Relevance of signal transduction pathway mutations in pediatric T-ALL

    Get PDF

    Relevance of signal transduction pathway mutations in pediatric T-ALL

    Get PDF

    Relevance of Signal Transduction Pathway Mutations in Pedriatic T-All

    Get PDF
    __Abstract__ The functions of our blood are coagulation, oxygen and nutrient transportation, toxics and waste disposal and immunity. These tasks are achieved by multiple cell types (platelets, erythrocytes and leukocytes) that continuously develop from a common ancestor (hematopoiesis); i.e. the hematopoietic stem cell (HSC). HSCs reside in the bone marrow and represent only a minor fraction of adult blood cells; 0.01-0.05%. Differentiation of HSCs into mature blood cells occurs in the bone marrow and/or secondary lymphoid organs including thymus and spleen following specific stimuli. During hematopoiesis, HSCs first differentiate into lineage restricted immature myeloid or lymphoid precursor cells (blasts). These can then develop further into erythrocytes (red blood cells), thrombocytes (platelets), or leukocytes (white blood cells). Leukocytes include granulocytes and macrophages (i.e. the myeloid cells) and B- and T lymphocytes

    Low-Cost High-Throughput Genotyping for Diagnosing Familial Hypercholesterolemia

    Get PDF
    BACKGROUND: Familial hypercholesterolemia (FH) is a common but underdiagnosed genetic disorder characterized by high low-density lipoprotein cholesterol levels and premature cardiovascular disease. Current sequencing methods to diagnose FH are expensive and time-consuming. In this study, we evaluated the accuracy of a low-cost, high-throughput genotyping array for diagnosing FH. METHODS: An Illumina Global Screening Array was customized to include probes for 636 variants, previously classified as FH-causing variants. First, its theoretical coverage was assessed in all FH variant carriers diagnosed through next-generation sequencing between 2016 and 2022 in the Netherlands (n=1772). Next, the performance of the array was validated in another sample of FH variant carriers previously identified in the Dutch FH cascade screening program (n=1268). RESULTS: The theoretical coverage of the array for FH-causing variants was 91.3%. Validation of the array was assessed in a sample of 1268 carriers of whom 1015 carried a variant in LDLR, 250 in APOB, and 3 in PCSK9. The overall sensitivity was 94.7% and increased to 98.2% after excluding participants with variants not included in the array design. Copy number variation analysis yielded a 89.4% sensitivity. In 18 carriers, the array identified a total of 19 additional FH-causing variants. Subsequent DNA analysis confirmed 5 of the additionally identified variants, yielding a false-positive result in 16 subjects (1.3%).CONCLUSIONS: The FH genotyping array is a promising tool for genetically diagnosing FH at low costs and has the potential to greatly increase accessibility to genetic testing for FH. Continuous customization of the array will further improve its performance.</p

    The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    Get PDF
    textabstractBackground PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKTmutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1- activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors

    The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    Get PDF
    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKTmutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1- activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors

    Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands

    No full text
    The genetic screening program for familial hypercholesterolemia (FH) in the Netherlands, which was embraced by the Dutch Ministry of Health from 1994 to 2014, has led to twenty years of identification of at least 1500 FH cases per year. Although funding by the government was terminated in 2014, the approach had proven its effectiveness and had built the foundation for the development of more sophisticated diagnostic tools, clinical collaborations, and new molecular-based treatments for FH patients. As such, the community was driven to continue the program, insurance companies were convinced to collaborate, and multiple approaches were launched to find new index cases with FH. Additionally, the screening was extended, now also including other heritable dyslipidemias. For this purpose, a diagnostic next-generation sequencing (NGS) panel was developed, which not only comprised the culprit LDLR, APOB, and PCSK9 genes, but also 24 other genes that are causally associated with genetic dyslipidemias. Moreover, the NGS technique enabled further optimization by including pharmacogenomic genes in the panel. Using such a panel, more patients that are prone to cardiovascular diseases are being identified nowadays and receive more personalized treatment. Moreover, the NGS output teaches us more and more about the dyslipidemic landscape that is less straightforward than we originally thought. Still, continuous progress is being made that underlines the strength of genetics in dyslipidemia, such as discovery of alternative genomic pathogenic mechanisms of disease development and polygenic contribution

    Successful genetic screening and creating awareness of familial hypercholesterolemia and other heritable Dyslipidemias in the Netherlands

    No full text
    The genetic screening program for familial hypercholesterolemia (FH) in the Netherlands, which was embraced by the Dutch Ministry of Health from 1994 to 2014, has led to twenty years of identification of at least 1500 FH cases per year. Although funding by the government was terminated in 2014, the approach had proven its effectiveness and had built the foundation for the development of more sophisticated diagnostic tools, clinical collaborations, and new molecular-based treatments for FH patients. As such, the community was driven to continue the program, insurance companies were convinced to collaborate, and multiple approaches were launched to find new index cases with FH. Additionally, the screening was extended, now also including other heritable dyslipidemias. For this purpose, a diagnostic next-generation sequencing (NGS) panel was developed, which not only comprised the culprit LDLR, APOB, and PCSK9 genes, but also 24 other genes that are causally associated with genetic dyslipidemias. Moreover, the NGS technique enabled further optimization by including pharmacogenomic genes in the panel. Using such a panel, more patients that are prone to cardiovascular diseases are being identified nowadays and receive more personalized treatment. Moreover, the NGS output teaches us more and more about the dyslipidemic landscape that is less straightforward than we originally thought. Still, continuous progress is being made that underlines the strength of genetics in dyslipidemia, such as discovery of alternative genomic pathogenic mechanisms of disease development and polygenic contribution

    ABCG5 and ABCG8 genetic variants in familial hypercholesterolemia

    No full text
    Background: Familial hypercholesterolemia (FH) is a common inherited disease characterized by elevated low-density lipoprotein cholesterol (LDL-C) plasma levels and increased cardiovascular disease risk. Most patients carry a mutation in the low-density lipoprotein receptor gene (LDLR). Common and rare variants in the genes encoding adenosine triphosphate–binding cassette transporters G5 and G8 (ABCG5 and ABCG8) have been shown to affect LDL-C levels. Objective: The objective of this study was to investigate whether and to which extent heterozygous variants in ABCG5 and ABCG8 are associated with the hypercholesterolemic phenotype. Methods: We sequenced ABCG5 and ABCG8 in a cohort of 3031 clinical FH patients and compared the prevalence of variants with a European reference population (gnomAD). Clinical characteristics of carriers of putative pathogenic variants in ABCG5 and/or ABCG8 were compared with heterozygous carriers of mutations in LDLR. Furthermore, we assessed the segregation of one ABCG5 and two ABCG8 variants with plasma lipid and sterol levels in three kindreds. Results: The frequencies of (likely) pathogenic LDLR, APOB, PCSK9, ABCG5, and ABCG8 variants in our FH cohort were 11.42%, 2.84%, 0.69%, 1.48%, and 0.96%, respectively. We identified 191 ABCG5 and ABCG8 variants of which 53 were classified as pathogenic or likely pathogenic. Of these 53 variants, 51 were either absent from a reference population or more prevalent in our FH cohort than in the reference population. LDL-C levels were significantly lower in heterozygous carriers of a (likely) pathogenic ABCG5 or ABCG8 variant compared to LDLR mutation carriers (6.2 ± 1.7 vs 7.2 ± 1.7 mmol/L, P < .001). The combination of both an ABCG5 or ABCG8 variant and a LDLR variant was found not to be associated with significant higher LDL-C levels (7.8 ± 2.3 vs 7.2 ± 1.7 mmol/L, P = .259). Segregation analysis in three families (nine carriers, in addition to the index cases, and 16 noncarriers) did not show complete segregation of the ABCG5/G8 variants with high LDL-C levels, and LDL-C levels were not different (3.9 ± 1.3 vs 3.5 ± 0.6 mmol/L in carriers and noncarriers, respectively, P = .295), while plasma plant sterol levels were higher in carriers compared to noncarriers (cholestanol: 10.2 ± 1.7 vs 8.4 ± 1.6 μmol/L, P = .007; campesterol: 22.5 ± 10.1 vs 13.4 ± 3.5 μmol/L, P = .008; sitosterol: 17.0 ± 11.6 vs 8.2 ± 2.6 μmol/L, P = .024). Conclusions: 2.4% of subjects in our FH cohort carried putative pathogenic ABCG5 and ABCG8 variants but had lower LDL-C levels compared to FH patients who were heterozygous carriers of an LDLR variant. These results suggest a role for these genes in hypercholesterolemia in FH patients with less severely elevated LDL-C levels. We did not find evidence that these variants cause autosomal dominant FH
    corecore