1 research outputs found

    Minimum-Fuel Trajectory Design in Multiple Dynamical Environments Utilizing Direct Transcription Methods and Particle Swarm Optimization

    Get PDF
    Particle swarm optimization is used to generate an initial guess for designing fuel-optimal trajectories in multiple dynamical environments. Trajectories designed in the vicinity of Earth use continuous or finite low-thrust burning and transfer from an inclined or equatorial circular low-Earth-orbit to a geostationary orbit. In addition, a trajectory from near-Earth to a periodic orbit about the cislunar Lagrange point with minimized impulsive burn costs is designed within a multi-body dynamical environment. Direct transcription is used in conjunction with a nonlinear optimizer to find locally-optimal trajectories given the initial guess. The near-Earth transfers are propagated at low-level thrust where neither the very-low-thrust spiral solution nor the impulsive transfer is an acceptable starting point. The very-high-altitude transfer is designed in a multi-body dynamical environment lacking a closed-form analytical solution. Swarming algorithms excel given a small number of design parameters.When continuous control time histories are needed, employing a polynomial parameterization facilitates the generation of feasible solutions. For design in a circular restricted three-body system, particle swarm optimization gains utility due to a more global search for the solution, but may be more sensitive to boundary constraints. Computation time and constraint weighting are areas where a swarming algorithm is weaker than other approaches
    corecore