3 research outputs found

    Random neural networks for rough volatility

    Full text link
    We construct a deep learning-based numerical algorithm to solve path-dependent partial differential equations arising in the context of rough volatility. Our approach is based on interpreting the PDE as a solution to an SPDE, building upon recent insights by Bayer, Qiu and Yao, and on constructing a neural network of reservoir type as originally developed by Gonon, Grigoryeva, Ortega. The reservoir approach allows us to formulate the optimisation problem as a simple least-square regression for which we prove theoretical convergence properties.Comment: 33 pages, 3 figure

    Deep Hedging under Rough Volatility

    Get PDF
    We investigate the performance of the Deep Hedging framework under training paths beyond the (finite dimensional) Markovian setup. In particular we analyse the hedging performance of the original architecture under rough volatility models with view to existing theoretical results for those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing the non-Markoviantity of time-series. Secondly, we analyse the hedging behaviour in these models in terms of P\&L distributions and draw comparisons to jump diffusion models if the the rebalancing frequency is realistically small
    corecore