203 research outputs found

    Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95224/1/jgra17034.pd

    Kinetic properties of heavy solar wind ions from Ulysses‐SWICS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95282/1/grl20935.pd

    Are high‐latitude forward‐reverse shock pairs driven by CME overexpansion?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95129/1/jgra18211.pd

    Ion Charge States in Halo CMEs: What can we Learn about the Explosion?

    Full text link
    We describe a new modeling approach to develop a more quantitative understanding of the charge state distributions of the ions of various elements detected in situ during halo Coronal Mass Ejection (CME) events by the Advanced Composition Explorer (ACE) satellite. Using a model CME hydrodynamic evolution based on observations of CMEs propagating in the plane of the sky and on theoretical models, we integrate time dependent equations for the ionization balance of various elements to compare with ACE data. We find that plasma in the CME ``core'' typically requires further heating following filament eruption, with thermal energy input similar to the kinetic energy input. This extra heating is presumably the result of post eruptive reconnection. Plasma corresponding to the CME ``cavity'' is usually not further ionized, since whether heated or not, the low density gives freeze-in close the the Sun. The current analysis is limited by ambiguities in the underlying model CME evolution. Such methods are likely to reach their full potential when applied to data to be acquired by STEREO when at optimum separation. CME evolution observed with one spacecraft may be used to interpret CME charge states detected by the other.Comment: 20 pages, accepted by Ap

    Response of a delta-doped charge-coupled device to low energy protons and nitrogen ions

    Full text link
    We present the results of a study of the response of a delta-doped charge-coupled device (CCD) exposed to ions with energies less than 10 keV10keV. The study of ions in the solar wind, the majority having energies in the 1–5 keV1–5keV range, has proven to be vital in understanding the solar atmosphere and the near Earth space environment. Delta-doped CCD technology has essentially removed the dead layer of the silicon detector. Using the delta-doped detector, we are able to detect H+H+ and N+N+ ions with energies ranging from 1 to 10 keV1to10keV in the laboratory. This is a remarkable improvement in the low energy detection threshold over conventional solid-state detectors, such as those used in space sensors, one example being the solar wind ion composition spectrometer (SWICS) on the Advanced Composition Explorer spacecraft, which can only detect ions with energies greater than 30 keV30keV because of the solid-state detector’s minimum energy threshold. Because this threshold is much higher than the average energy of the solar wind ions, the SWICS instrument employs a bulky high voltage postacceleration stage that accelerates ions above the 30 keV30keV detection threshold. This stage is massive, exposes the instrument to hazardous high voltages, and is therefore problematic both in terms of price and its impact on spacecraft resources. Adaptation of delta-doping technology in future space missions may be successful in reducing the need for heavy postacceleration stages allowing for miniaturization of space-borne ion detectors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87896/2/053301_1.pd

    Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results

    Get PDF
    We use ACE/SWICS elemental composition data to compare the variations in solar wind fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009) and the period in which the Genesis spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate our analysis in terms of solar wind regimes (i.e. originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-FIP ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of solar wind speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap

    Constraints on Coronal Mass Ejection Evolution from in Situ Observations of Ionic Charge States

    Full text link
    We present a novel procedure for deriving the physical properties of coronal mass ejections (CMEs) in the corona. Our methodology uses in situ measurements of ionic charge states of C, O, Si, and Fe in the heliosphere and interprets them in the context of a model for the early evolution of interplanetary CME (ICME) plasma, between 2 and 5 R _ . We find that the data are best fit by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnection jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time history and, therefore, provide important constraints for the heating and expansion timescales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90747/1/0004-637X_730_2_103.pd

    Spatial Relationship of Signatures of Interplanetary Coronal Mass Ejections

    Full text link
    Interplanetary coronal mass ejections (ICMEs) are characterized by a number of signatures. In particular, we examine the relationship between Fe charge states and other signatures during ICMEs in solar cycle 23. Though enhanced Fe charge states characterize many ICMEs, average charge states vary from event to event, are more likely to be enhanced in faster or flare‐related ICMEs, and do not appear to depend on whether the ICME is a magnetic cloud. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87650/2/681_1.pd
    • 

    corecore