38 research outputs found
Recommended from our members
MicroRNAs in apoptosis, autophagy and necroptosis
MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death
Percutaneous vertebroplasty combined with interstitial implantation of 125I seeds in banna mini-pigs
P62: An emerging oncotarget for osteolytic metastasis
Bone metastasis occurs in the majority of late-stage tumors with poor prognosis. It is mainly classified as osteoblastic metastasis and osteolytic metastasis. The pathogenesis of osteolytic metastasis is a “vicious cycle” between tumor cells and bone cells (primarily the osteoclasts), which is mediated by secretory factors. The P62 adapter protein is a versatile multitasker between tumor cells and bone cells. The overexpression of P62 has been detected among a variety of tumors, playing positive roles in both tumorigenesis and metastasis. Moreover, P62 is an important modulator of the osteoclastogenesis pathway. Therefore, the ability of P62 to modulate tumors and osteoclasts suggests that it may be a feasible oncotarget for bone metastasis, especially for osteolytic metastasis. Recent research has shown that a P62 DNA vaccine triggered effective anti-tumor, anti-metastatic and anti-osteoporotic activities. Growing lines of evidence point to P62 as an emerging oncotarget for osteolytic metastasis. In this review, we outline the different roles of P62 in tumor cells and osteoclasts, focusing on the P62-related signaling pathway in key steps of osteolytic metastasis, including tumorigenesis, metastasis and osteoclastogenesis. Finally, we discuss the newest observations on P62 as an oncotarget for osteolytic metastasis treatment
Recommended from our members
Apoptosis, autophagy, necroptosis, and cancer metastasis
Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis