81 research outputs found

    Intervention of PKC-θ as an immunosuppressive regimen

    Get PDF
    PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection

    Developing and Activated T Cell Survival Depends on Differential Signaling Pathways to Regulate Anti-Apoptotic Bcl-xL

    Get PDF
    Survival of T cells in both the central and peripheral immune system determines its ultimate function in the regulation of immune responses. In the thymus, developing T cells undergo positive and negative selection to generate a T cell repertoire that responds to foreign, but not self, antigens. During T cell development, the T cell receptor α chain is rearranged. However, the first round of rearrangement may fail, which triggers another round of α chain rearrangement until either successful positive selection or cell death occurs. Thus, the lifespan of double positive (CD4+CD8+; DP) thymocytes determines how many rounds of α chain rearrangement can be carried out and influences the likelihood of completing positive selection. The anti-apoptotic protein Bcl-xL is the ultimate effector regulating the survival of CD4+CD8+ thymocytes subject to the selection process, and the deletion of Bcl-xL leads to premature apoptosis of thymocytes prior to the completion of the developmental process. In addition to its critical function in the thymus, Bcl-xL also regulates the survival of peripheral T cells. Upon engagement with antigens, T cells are activated and differentiated into effectors. Activated T cells upregulate Bcl-xL to enhance their own survival. Bcl-xL-mediated survival is required for the generation of effectors that carry out the actual immune responses. In the absence of Bcl-xL, mature T cells undergo apoptosis prior to the completion of the differentiation process to become effector cells. Therefore, Bcl-xL ensures the survival of both developing and peripheral T cells, which is essential for a functional immune system

    Intermittent-Hypoxia-Induced Autophagy Activation Through the ER-Stress-Related PERK/eIF2α/ATF4 Pathway is a Protective Response to Pancreatic β-Cell Apoptosis

    Get PDF
    Background/Aims: Intermittent hypoxia (IH) causes apoptosis in pancreatic β-cells, but the potential mechanisms remain unclear. Endoplasmic reticulum (ER) stress, autophagy, and apoptosis are interlocked in an extensive crosstalk. Thus, this study aimed to investigate the contributions of ER stress and autophagy to IH-induced pancreatic β-cell apoptosis. Methods: We established animal and cell models of IH, and then inhibited autophagy and ER stress by pharmacology and small interfering RNA (siRNA) in INS-1 cells and rats. The levels of biomarkers for autophagy, ER stress, and apoptosis were evaluated by immunoblotting and immunofluorescence. The number of autophagic vacuoles was observed by transmission electron microscopy. Results: IH induced autophagy activation both in vivo and in vitro, as evidenced by increased autophagic vacuole formation and LC3 turnover, and decreased SQSTM1 level. The levels of ER-stress-related proteins, including GRP78, CHOP, caspase 12, phosphorylated (p)-protein kinase RNA-like ER kinase (PERK), p-eIF2α, and activating transcription factor 4 (ATF4) were increased under IH conditions. Inhibition of ER stress with tauroursodeoxycholic acid or 4-phenylbutyrate partially blocked IH-induced autophagy in INS-1 cells. Furthermore, inhibition of PERK with GSK2606414 or siRNA blocked the ERstress-related PERK/eIF2α/ATF4 signaling pathway and inhibited autophagy induced by IH, which indicates that IH-induced autophagy activation is dependent on this signaling pathway. Promoting autophagy with rapamycin alleviated IH-induced apoptosis, whereas inhibition of autophagy with chloroquine or autophagy-related gene (Atg5 and Atg7) siRNA aggravated pancreatic β-cell apoptosis caused by IH. Conclusion: IH induces autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 signaling pathway, which is a protective response to pancreatic β-cell apoptosis caused by IH

    A two-amino-acid substitution in the transcription factor RORγt disrupts its function in T_H17 differentiation but not in thymocyte development

    Get PDF
    The transcription factor RORγt regulates differentiation of the T_H17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents T_H17 cell–mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγt^M) that 'preferentially' disrupted T_H17 differentiation but not thymocyte development. Mice expressing RORγt^M were resistant to EAE associated with defective T_H17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγt^M showed less ubiquitination at Lys69 that was selectively required for T_H17 differentiation but not T cell development. This study will inform the development of treatments that selectively target T_H17 cell–mediated autoimmunity but do not affect thymocyte development or induce lymphoma

    A two-amino-acid substitution in the transcription factor RORγt disrupts its function in T_H17 differentiation but not in thymocyte development

    Get PDF
    The transcription factor RORγt regulates differentiation of the T_H17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents T_H17 cell–mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγt^M) that 'preferentially' disrupted T_H17 differentiation but not thymocyte development. Mice expressing RORγt^M were resistant to EAE associated with defective T_H17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγt^M showed less ubiquitination at Lys69 that was selectively required for T_H17 differentiation but not T cell development. This study will inform the development of treatments that selectively target T_H17 cell–mediated autoimmunity but do not affect thymocyte development or induce lymphoma

    Ameliorated ConA-Induced Hepatitis in the Absence of PKC-theta

    Get PDF
    Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis

    Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer

    Get PDF
    Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 10q11.2, harboring the microseminoprotein-β (MSMB) gene. Both the gene product of MSMB, the prostate secretory protein 94 (PSP94) and its binding protein (PSPBP), have been previously investigated as serum biomarkers for prostate cancer progression. Recent functional work has shown that different alleles of the significantly associated SNP in the promoter of MSMB found to be associated with prostate cancer risk, rs10993994, can influence its expression in tumors and in vitro studies. Since it is plausible that additional variants in this region contribute to the risk of prostate cancer, we have used next-generation sequencing technology to resequence a ~97-kb region that includes the area surrounding MSMB (chr10: 51,168,025–51,265,101) in 36 prostate cancer cases, 26 controls of European origin, and 8 unrelated CEPH individuals in order to identify additional variants to investigate in functional studies. We identified 241 novel polymorphisms within this region, including 142 in the 51-kb block of linkage disequilibrium (LD) that contains rs10993994 and the proximal promoter of MSMB. No sites were observed to be polymorphic within the exons of MSMB

    Critical Role of TCF-1 in Repression of the IL-17 Gene

    Get PDF
    Overwhelming activation of IL-17, a gene involved in inflammation, leads to exaggerated Th17 responses associated with numerous autoimmune conditions, such as experimental autoimmune encephalomyelitis (EAE). Here we show that TCF-1 is a critical factor to repress IL-17 gene locus by chromatin modifications during T cell development. Deletion of TCF-1 resulted in increased IL-17 gene expression both in thymus and peripheral T cells, which led to enhanced Th17 differentiation. As a result, TCF-1-/- mice were susceptible to Th17-dependent EAE induction. Rag1-/- mice reconstituted with TCF-1-/- T cells were also susceptible to EAE, indicating TCF-1 is intrinsically required to repress IL-17. However, expression of wild-type TCF-1 or dominant negative TCF-1 did not interfere with Th17 differentiation in mature T cells. Furthermore, expression of TCF-1 in TCF-1-/- T cells could not restore Th17 differentiation to wild-type levels, indicating that TCF-1 cannot affect IL-17 production at the mature T cell stage. This is also supported by the normal up-regulation or activation in mature TCF-1-/- T cells of factors known to regulate Th17 differentiation, including RORγt and Stat3. We observed hyperacetylation together with trimethylation of Lys-4 at the IL-17 locus in TCF-1-/- thymocytes, two epigenetic modifications indicating an open active state of the gene. Such epigenetic modifications were preserved even when TCF-1-/- T cells migrated out of thymus. Therefore, TCF-1 mediates an active process to repress IL-17 gene expression via epigenetic modifications during T cell development. This TCF-1-mediated repression of IL-17 is critical for peripheral T cells to generate balanced immune responses

    Mechanisms regulating the development and function of natural regulatory T cells

    No full text

    RORγt Recruits Steroid Receptor Coactivators to Ensure Thymocyte Survival

    No full text
    corecore