23,316 research outputs found

    Learning Deep CNN Denoiser Prior for Image Restoration

    Full text link
    Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.Comment: Accepted to CVPR 2017. Code: https://github.com/cszn/ircn

    Remove Cosine Window from Correlation Filter-based Visual Trackers: When and How

    Full text link
    Correlation filters (CFs) have been continuously advancing the state-of-the-art tracking performance and have been extensively studied in the recent few years. Most of the existing CF trackers adopt a cosine window to spatially reweight base image to alleviate boundary discontinuity. However, cosine window emphasizes more on the central region of base image and has the risk of contaminating negative training samples during model learning. On the other hand, spatial regularization deployed in many recent CF trackers plays a similar role as cosine window by enforcing spatial penalty on CF coefficients. Therefore, we in this paper investigate the feasibility to remove cosine window from CF trackers with spatial regularization. When simply removing cosine window, CF with spatial regularization still suffers from small degree of boundary discontinuity. To tackle this issue, binary and Gaussian shaped mask functions are further introduced for eliminating boundary discontinuity while reweighting the estimation error of each training sample, and can be incorporated with multiple CF trackers with spatial regularization. In comparison to the counterparts with cosine window, our methods are effective in handling boundary discontinuity and sample contamination, thereby benefiting tracking performance. Extensive experiments on three benchmarks show that our methods perform favorably against the state-of-the-art trackers using either handcrafted or deep CNN features. The code is publicly available at https://github.com/lifeng9472/Removing_cosine_window_from_CF_trackers.Comment: 13 pages, 7 figures, submitted to IEEE Transactions on Image Processin

    Transport parameters in neutron stars from in-medium NN cross sections

    Full text link
    We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter and β\beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two and three body interaction. The investigation covers a wide baryon density range as requested in the applications to neutron stars. The results for the transport coefficients in β\beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of non radial modes in neutron stars
    • …
    corecore