6,276 research outputs found
Recommended from our members
Advances and challenges in commercializing radiative cooling
Radiative cooling (RC) dissipates terrestrial heat to outer space through the atmospheric window, without external energy input and production of environmental pollutants. More and more efforts have been devoted to this clean promising cooling technology; thus diverse radiative coolers have emerged. However, the performance, cost, and effectiveness of various radiative coolers are not exactly the same. In addition, the large-scale application of RC technology is impeded by the low energy density, uncontrollable cooling power, and limited sky-facing area. Here, we critically review the recent progress of RC technology, evaluate the cooling performance of various radiative coolers, and discuss the challenges and feasible solutions to commercialize RC technology. Furthermore, valuable insights are provided to make new breakthroughs in this field
Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces
©2003 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevLett.91.185502DOI: 10.1103/PhysRevLett.91.185502We report that the Zn-terminated ZnO (0001) polar surface is chemically active and the oxygenterminated (0001) polar surface is inert in the growth of nanocantilever arrays. Longer and wider "comblike" nanocantilever arrays are grown from the (0001)-Zn surface, which is suggested to be a self-catalyzed process due to the enrichment of Zn at the growth front. The chemically inactive
(0001)-O surface typically does not initiate any growth, but controlling experimental conditions could lead to the growth of shorter and narrower nanocantilevers from the intersections between (0001)-O with (0110) surfaces
Guided atom laser : a new tool for guided atom optics
We present a guided atom laser. A Bose-Einstein condensate (BEC) is created
in a crossed hybrid magnetic and an elongated optical trap, which acts as a
matterwave guide. Atoms are extracted from the BEC by radio frequency (rf)
outcoupling and then guided in the horizontal optical matterwave guide. This
method allows to control the acceleration of the beam and to achieve large de
Broglie wavelength. We also measure the longitudinal energy of the guided atom
laser using atom optical elements based on a blue light barrier
Chinese farmers’ willingness to accept compensation to practice safe disposal of HPAI infected chicken
Abstract not availableZeying Huang, Jimin Wang, Alec Zu
Recommended from our members
Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature
The energy crisis and environmental pollution pose great challenges to human development. Traditional vapor-compression cooling consumes abundant energy and leads to a series of environmental problems. Radiative cooling without energy consumption and environmental pollution holds great promise as the next generation cooling technology, applied in buildings mostly in indirect way. In this work, a temperature-regulating module was introduced for direct summer cooling and winter heating. Firstly, the summer experiments were conduct to investigate the radiative cooling performance of the module. And the results indicated that the maximum indoor temperature reached only 27.5 °C with the ambient temperature of 34 °C in low latitude areas and the air conditioning system was on for only about a quarter of the day. Subsequently, the winter experiments were performed to explore the performance of the module in cooling and heating modes. The results indicated that indoor temperature can reach 25 °C in the daytime without additional heat supply and about a quarter of the day didn't require heating in winter. Additionally, the transient model of the module and the building revealed that the electricity saving of 42.4% (963.5 kWh) can be achieved in cooling season with the module, and that was 63.7% (1449.1 kWh) when coupling with energy storage system. Lastly, further discussion about the challenges and feasible solutions for radiative cooling to directly combine with the buildings were provided to advance the application of radiative cooling. Furthermore, with an acceptable payback period of 8 years, the maximum acceptable incremental cost reached 26.2 $/m2. The work opens up a new avenue for the application mode of the daytime radiative cooling technology
Elliptic flow of meson and strange quark collectivity at RHIC
Based on A Multi-Phase Transport (AMPT) model, we have studied the elliptic
flow of mesons from reconstructed decay channel at
the top Relativistic Heavy Ion Collider energy at Brookhaven National
Laboratory. The dependences of on transverse momentum and
collision centrality are presented and the rescattering effect of mesons
in the hadronic phase is also investigated. The results show that experimental
measurement of for mesons can retain the early collision
information before decays and that the value obeys the
constituent quark number scaling which has been observed for other mesons and
baryons. Our study indicates that the mostly reflects partonic
level collectivity developed during the early stage of the nucleus-nucleus
collision and the strange and light up/down quarks have developed similar
angular anistropy properties at the hadronization.Comment: 5 pages and 5 figures; accepted by Physical Review
- …