9,172 research outputs found

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)⨂u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Spin Polarized Asymmetric Nuclear Matter and Neutron Star Matter Within the Lowest Order Constrained Variational Method

    Full text link
    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV18AV_{18}, Reid93Reid93, UV14UV_{14} and AV14AV_{14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.Comment: 21 pages, 11 figure

    Lowest Order Constrained Variational Calculation of the Polarized Nuclear Matter with the Modern AV18AV_{18} Potential

    Full text link
    The lowest order constrained variational method is applied to calculate the polarized symmetrical nuclear matter properties with the modern AV18AV_{18} potential performing microscopic calculations. Results based on the consideration of magnetic properties show no sign of phase transition to a ferromagnetic phase.Comment: 19 pages, 6 figure

    Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements

    Full text link
    Accurate high-energy electron diffraction measurements of structure factors of NiO have been carried out to investigate how strong correlations in the Ni 3d shell affect electron charge density in the interior area of nickel ions and whether the new ab-initio approaches to the electronic structure of strongly correlated metal oxides are in accord with experimental observations. The generalized gradient approximation (GGA) and the local spin density approximation corrected by the Hubbard U term (LSDA+U) are found to provide the closest match to experimental measurements. The comparison of calculated and observed electron charge densities shows that correlations in the Ni 3d shell suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments

    Full text link
    The synthetic organic compound lambda-(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe(3+) magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe(3+) ions are replaced by non-magnetic Ga(3+) ions. We show how He can be extracted from the observed splitting of the Shubnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials.Comment: 5 page

    Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors

    Full text link
    We propose a mechanism by which the paramagnetic pair-breaking effect is largely reduced in superconductors with coexisting antiferromagnetic long- range and short-range orders. The mechanism is an extension of the Jaccarino and Peter mechanism to antiferromagnetic conductors, but the resultant phase diagram is quite different. In order to illustrate the mechanism, we examine a model which consists of mobile electrons and antiferromagnetically correlated localized spins with Kondo coupling between them. It is found that for weak Kondo coupling, the superconductivity occurs over an extraordinarily wide region of the magnetic field including zero field. The critical field exceeds the Chandrasekhar and Clogston limit, but there is no lower limit in contrast to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo coupling, both the low-field superconductivity and a field-induced superconductivity occur. Possibilities in hybrid ruthenate cuprate superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn. Vol.71, No.3 (2002

    Spin polarized neutron matter within the Dirac-Brueckner-Hartree-Fock approach

    Get PDF
    The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the nature of the EOS properties in terms of specific features of the nuclear force model.Comment: 6 pages, 11 figures, revised/extended calculation

    Global polarization of QGP in non-central heavy ion collisions at high energies

    Full text link
    Due to the presence of a large orbital angular momentum of the parton system produced at the early stage of non-central heavy-ion collisions, quarks and anti-quarks are shown to be polarized in the direction opposite to the reaction plane which is determined by the impact-parameter and the beam momentum. The global quark polarization via elastic scattering was first calculated in an effective static potential model, then using QCD at finite temperature with the hard-thermal-loop re-summed gluon propagator. The measurable consequences are discussed. Global hyperon polarization from the hadronization of polarized quarks are predicted independent of the hadronization scenarios. It has also been shown that the global polarization of quarks and anti-quarks leads also to spin alignment of vector mesons. Dedicated measurements at RHIC are underway and some of the preliminary results are obtained. In this presentation, the basic idea and main results of global quark polarization are presented. The direct consequences such as global hyperon polarization and spin alignment are summarized.Comment: plenary talk at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China, November 14-20, 200
    • …
    corecore