10 research outputs found

    Generalized set-valued variational-like inclusions and Wiener-Hopf equations in Banach spaces

    No full text
    By using the notion of Jη-proximal mapping for a nonconvex, lower semicontinuous, η-subdifferentiable proper functional in reflexive Banach spaces, we introduce and study a class of generalized set-valued variational-like inclusions in Banach spaces and show their equivalences with a class of Wiener-Hopf equations. We propose two new iterative algorithms for the class of generalized set-valued variational-like inclusions. Furthermore, we prove the existence of solutions of the generalized set-valued variational-like inclusions and the convergence criteria of the two iterative algorithms for the generalized set-valued variational-like inclusions in reflexive Banach spaces. The results presented in this paper are new and are an extension of the corresponding results in this direction

    Existence of Solutions and Algorithm for a System of Variational Inequalities

    Get PDF
    We obtain some existence results for a system of variational inequalities (for short, denoted by SVI) by Brouwer fixed point theorem. We also establish the existence and uniqueness theorem using the projection technique for the SVI and suggest an iterative algorithm and analysis convergence of the algorithm

    Existence of solutions for generalized nonlinear mixed variational-like inequalities in Banach spaces

    Get PDF
    We introduce and study a new class of generalized nonlinear mixed variational-like inequalities in reflexive Banach spaces. By applying Ding's technique we prove several existence and uniqueness theorems of solutions for the generalized nonlinear mixed variational-like inequality, extend the auxiliary problem technique to suggest and analyze an iterative method to compute the approximate solutions of the generalized nonlinear mixed variational-like inequality, and establish the convergence criteria of the iterative method. The results presented in this paper improve, extend, and unify many known results in this area

    A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring

    No full text
    Nanomaterials are desirable for sensing applications. Therefore, MnO2 nanosheets and nitrogen-doped carbon dots (NCDs) were used to construct a ratiometric biosensor for quantification of 2,4-dichlorophenoxyacetic acid. The MnO2 nanosheets drove the oxidation of colorless o-phenylenediamine to OPDox, which exhibits fluorescence emission peaks at 556 nm. The fluorescence of OPDox was efficiently quenched and the NCDs were recovered as the ascorbic acid produced by the hydrolyzed alkaline phosphatase (ALP) substrate increased. Owing to the selective inhibition of ALP activity by 2,4-D and the inner filter effect, the fluorescence intensity of the NCDs at 430 nm was suppressed, whereas that at 556 nm was maintained. The fluorescence intensity ratio was used for quantitative detection. The linear equation was F = 0.138 + 3.863·C 2,4-D (correlation coefficient R2 = 0.9904), whereas the limits of detection (LOD) and quantification (LOQ) were 0.013 and 0.040 μg/mL. The method was successfully employed for the determination of 2,4-D in different vegetables with recoveries of 79%~105%. The fluorescent color change in the 2,4-D sensing system can also be captured by a smartphone to achieve colorimetric detection by homemade portable test kit

    Ultrasensitive Ochratoxin A Detection in Cereal Products Using a Fluorescent Aptasensor Based on RecJ<sub>f</sub> Exonuclease-Assisted Target Recycling

    No full text
    Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs such as cereal grains. It greatly threatens human health owing to its strong toxicity and high stability. Aptasensors have emerged as promising tools for the analysis of small molecule contaminants. Nucleic-acid-based signal amplification enables detectable signals to be obtained from aptasensors. However, this strategy often requires the use of complex primers or multiple enzymes, entailing problems such as complex system instability. Herein, we propose a fluorescent aptasensor for the ultrasensitive detection of OTA in cereal products, with signal amplification through RecJf exonuclease-assisted target recycling. The aptamer/fluorescein-labeled complementary DNA (cDNA-FAM) duplex was effectively used as the target-recognition unit as well as the potential substrate for RecJf exonuclease cleavage. When the target invaded the aptamer-cDNA-FAM duplex to release cDNA-FAM, RecJf exonuclease could cleave the aptamer bonded with the target and release the target. Thus, the target-triggered cleavage cycling would continuously generate cDNA-FAM as a signaling group, specifically amplifying the response signal. The proposed exonuclease-assisted fluorescent aptasensor exhibited a good linear relationship with OTA concentration in the range from 1 pg/mL to 10 ng/mL with an ultralow limit of detection (6.2 ng/kg of cereal). The analytical method showed that recoveries of the cereal samples ranged from 83.7 to 109.3% with a repeatability relative standard deviation below 8%. Importantly, the proposed strategy is expected to become a common detection model because it can be adapted for other targets by replacing the aptamer. Thus, this model can guide the development of facile approaches for point-of-care testing applications

    Intranasal immunization with recombinant outer membrane protein A induces protective immune response against Stenotrophomonas maltophilia infection.

    No full text
    Stenotrophomonas maltophilia (S. maltophilia), a multi-drug resistant opportunistic pathogen, is associated with nosocomial and community-acquired infections. Preventive and therapeutic strategies for such infections are greatly needed. In this study, sequence alignment analysis revealed that Outer membrane protein A (OmpA) was highly conserved among S. maltophilia strains but shared no significant similarity with human and mouse proteomes. In mice, intranasal immunization with S. maltophilia recombinant OmpA (rOmpA) without additional adjuvant induced sustained mucosal and systemic rOmpA-specific antibody responses. Treatment with rOmpA stimulated significantly higher levels of secretion of IFN-γ, IL-2, and IL-17A (All P<0.05) from the primary splenocytes isolated from rOmpA-immunized mice than from the primary splenocytes isolated from PBS-immunized mice. Furthermore, mice immunized with rOmpA showed significantly reduced bacterial burden in the lung and reduced levels of pro-inflammatory cytokines (TNF-α and IL-6) in bronchoalveolar lavage fluid (BALF) 24 hours after intranasal S. maltophilia infection, indicating that immunization with rOmpA may have protective effects against S. maltophilia challenge in mice. Our findings suggest that intranasal immunization with rOmpA may induce mucosal and systemic immune responses in mice, trigger Th1- and Th17-mediated cellular immune responses, and thus stimulate host immune defense against S. maltophilia infection. These results also demonstrate that intranasal vaccination may offer an alternative approach to current strategies since it induces a mucosal as well as a systemic immune response
    corecore