6 research outputs found
Recommended from our members
Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER): Protocol for a Multisite Longitudinal Cohort Study (Preprint)
BACKGROUND
Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination.
OBJECTIVE
The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers.
METHODS
The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19–like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)–confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR–confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days.
RESULTS
The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites.
CONCLUSIONS
Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness.
INTERNATIONAL REGISTERED REPORT
DERR1-10.2196/31574
</sec
Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER): Protocol for a Multisite Longitudinal Cohort Study
BackgroundWorkers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination.
ObjectiveThe Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers.
MethodsThe RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19–like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)–confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR–confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days.
ResultsThe study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites.
ConclusionsData collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness.
International Registered Report Identifier (IRRID)DERR1-10.2196/3157
Recommended from our members
Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021
Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.
Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.
In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons
Recommended from our members
Prevention and Attenuation of COVID-19 by BNT162b2 and mRNA-1273 Vaccines
ABSTRACT BACKGROUND Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection or attenuating disease when administered in real-world conditions. METHODS Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS-CoV-2 testing during December 14, 2020—April 10 2021. Self-collected mid-turbinate nasal swabs were tested by qualitative and quantitative reverse-transcription–polymerase-chain-reaction (RT-PCR). VE was calculated as 100%×(1−hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation. RESULTS SARS-CoV-2 was detected in 204 (5.1%) participants; 16 were partially (≥14 days post-dose-1 to 13 days after dose-2) or fully (≥14 days post-dose-2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status ( CONCLUSIONS Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infections when administered in real-world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination
Recommended from our members
Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines
In a study involving 3975 health care personnel, first responders, and other essential workers, the effectiveness of mRNA vaccines against SARS-CoV-2 infection was 91% with full vaccination. The vaccines attenuated the viral RNA load, febrile symptoms, and illness duration among those who became infected despite vaccination
Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Among Hospitalized Adults Aged ≥65 Years — United States, January–March 2021
Adults aged ≥65 years are at increased risk for severe outcomes from COVID-19 and were identified as a priority group to receive the first COVID-19 vaccines approved for use under an Emergency Use Authorization (EUA) in the United States (1-3). In an evaluation at 24 hospitals in 14 states,* the effectiveness of partial or full vaccination† with Pfizer-BioNTech or Moderna vaccines against COVID-19-associated hospitalization was assessed among adults aged ≥65 years. Among 417 hospitalized adults aged ≥65 years (including 187 case-patients and 230 controls), the median age was 73 years, 48% were female, 73% were non-Hispanic White, 17% were non-Hispanic Black, 6% were Hispanic, and 4% lived in a long-term care facility. Adjusted vaccine effectiveness (VE) against COVID-19-associated hospitalization among adults aged ≥65 years was estimated to be 94% (95% confidence interval [CI] = 49%-99%) for full vaccination and 64% (95% CI = 28%-82%) for partial vaccination. These findings are consistent with efficacy determined from clinical trials in the subgroup of adults aged ≥65 years (4,5). This multisite U.S. evaluation under real-world conditions suggests that vaccination provided protection against COVID-19-associated hospitalization among adults aged ≥65 years. Vaccination is a critical tool for reducing severe COVID-19 in groups at high risk