7 research outputs found

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Analysis of Deficient Reinforced Concrete Beam-Column Connections using Scissors Model

    No full text
    International audienceMacro-modeling techniques have been proved as suitable solutions for analysis and assessment of deficient reinforced concrete (RC) beam column joints subjected to seismic loads. The techniques vary from single rotational spring at the joint panel to multi-spring complex joint elements for individual response prediction at the panel and interface. The technique is used to bridge the gap between the rigid joint modeling leading to compromised structural safety and economy and finite element methods (FEM) resulting in very high computational effort. Joints built prior to development of seismic specifications exhibit certain deficiencies characterized by improper construction, weak materials, lack of transverse reinforcement, and lower reinforcement ratios. Deficient joints exhibit a brittle behavior when exposed to lateral loads

    eBusiness-Process-Personalization using Neuro-Fuzzy Adaptive Control for Interactive Systems

    No full text
    ‘Personalization’, which was earlier recognized as the 5th ‘P ’ of e-marketing, is now becoming a strategic success factor in the present customer-centric e-business environment. This paper proposes two changes in the current structure of personalization efforts in ebusinesses. Firstly, a move towards business-process personalization instead of only website-content personalization and secondly use of an interactive adaptive scheme instead of the commonly employed algorithmic filtering approaches. These can be achieved by applying a neuro-intelligence model to web based real time interactive systems and by integrating it with converging internal and external e-business processes. This paper presents a framework, showing how it is possible to personalize e-business processes by adapting the interactive system to customer preferences. The proposed model applies Neuro-Fuzzy Adaptive Control for Interactive Systems (NFACIS) model to converging business processes to get the desired results. Field of Research: Marketing, e-business As Kasanoff (2001) mentioned, the ability to treat different people differently is the mos

    Mobile IP Issues and Their Potential Solutions: An

    No full text
    A typical Internet protocol (IP)could not address the mobility of nodes and was only designed for fixed networks where the nodes were improbable to move from one location to other. An ever-increasing dependence on network computation makes the use of portable and handy devices,inevitable. Mobile IP protocol architecture was developed tomeet such needs and support mobility. Mobile IPlets the roving nodes to establish an uninterrupted connection towards internet without altering the IP address whilemoving to another network.However, Mobile IP goes through several issues like ingress filtering, triangle routing, handoff and Quality of service problems etc. In this paper we discuss few of those with their possible solutions. That resolves these problems, reduce the unnecessary load from the network and enhance the efficiency. Some security threats on mobile and their solutions are also focused to secure the communicationduring mobility

    Review of Modeling Techniques for Analysis and Assessment of RC Beam–Column Joints Subjected to Seismic Loads

    No full text
    Beam–column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility under lateral loading and can cause the progressive failure of the entire structure. The joint may fail in the shear prior to the connecting beam and column elements. Therefore, several modeling techniques have been devised in the past to capture the non-linear response of such joints. Modeling techniques used to capture the non-linear response of reinforced-concrete-beam–column joints range from simplified lumped plasticity models to detailed fiber-based finite element (FE) models. The macro-modeling technique for joint modeling is highly efficient in terms of the computational effort, analysis time, and computer memory requirements, and is one of the most widely used modeling techniques. The non-linear shear response of the joint panel and interface bond–slip mechanism are concentrated in zero-length linear and rotational springs while the connecting elements are modeled through elastic elements. The shear response of joint panels has also been captured through rigid panel boundary elements with rotational springs. The computational efficiency of these models is significantly high compared to continuum models, as each joint act as a separate supe-element. This paper aims to provide an up-to-date review of macro-modeling techniques for the analysis and assessment of RC-beam–column connections subjected to lateral loads. A thorough understanding of existing models is necessary for developing new mechanically adequate and computationally efficient joint models for the analysis and assessment of deficient RC connections. This paper will provide a basis for further research on the topic and will assist in the modification and optimization of existing models. As each model is critically evaluated, and their respective capabilities and limitations are explored, it should help researchers to improve and build on modeling techniques both in terms of accuracy and computational efficiency

    Supplementation of banana peel powder for the development of functional broiler nuggets

    No full text
    Banana peel powder is considered one of the most nutritive and effective waste product to be utilized as a functional additive in the food industry. This study aimed to determine the impact of banana peel powder at concentrations of 2%, 4%, and 6% on the nutritional composition, physicochemical parameters, antioxidant potential, cooking properties, microbial count, and organoleptic properties of functional nuggets during storage at refrigeration temperature for 21 days. Results showed a significant increase in nutritional content including ash and crude fiber ranging from 2.52 ± 0.017% to 6.45 ± 0.01% and 0.51 ± 0.01% to 2.13 ± 0.01%, respectively, whereas a significant decrease was observed in crude protein and crude fat ranging from 13.71 ± 0.02% to 8.92 ± 0.02% and 9.25 ± 0.02% to 4.51 ± 0.01%, respectively. The incorporation of banana peel powder significantly improved the Water Holding Capacity from 5.17% to 8.37%, cooking yield from 83.20 ± 0.20% to 87.73 ± 0.16% and cooking loss from 20.19 ± 0.290% to 13.98 ± 0.15%. Antioxidant potential was significantly improved as TPC of functional nuggets increased ranging from 3.73 ± 0.02 mg GAE/g to 8.53 ± 0.02 mg GAE/g while a decrease in TBARS (0.18 ± 0.02 mg malonaldehyde/kg to 0.14 ± 0.02 mg malonaldehyde/kg) was observed. Furthermore, functional broiler nuggets depicted a significantly reduced total plate count (3.06–4.20 × 105 CFU/g) than control, which is likely due to high amounts of phenolic compounds in BPP. Broiler nuggets supplemented with 2% BPP (T1) received the greatest sensory scores in terms of flavour, tenderness, and juiciness. Results of current study revealed the potential of BPP to be utilized as an effective natural source of fibre supplementation in food products along with enhanced antioxidant and anti-microbial properties
    corecore