11 research outputs found
Effect of junction temperature on 1.3 µm InAs/GaAs quantum dot lasers directly grown on silicon
Laser junction temperature (Tj) is an essential parameter that directly affects the light power and lifetime of semiconductor lasers. Here, we investigate the effect of Tj on an InAs/GaAs quantum dot (QD) laser grown on a Si(001) substrate. Under 1% low pulsed current (1 µs pulse width and 100 µs period), the pure temperature-induced mode shift rate is 0.084 nm/°C. By increasing the duty cycle and measuring the corresponding mode wavelength shift, the laser’s Tj under the continuous-wave (Tj-CW) mode is predicted to be from 31.1 to 81.6 °C when the injection current increases from 100 to 550 mA. Next, the average thermal resistance is 36.2 °C/W. Moreover, the non-negligible increase in Tj-CW is analyzed to significantly reduce the mean-time-to-failure of Si-based QD laser, especially for cases under high CW injection currents. These results provide an accurate reference for the thermal analysis of silicon-based QD lasers and point the way to high performance on-chip light sources by improving the laser heat accumulation
Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation
Large signal modulation characteristics of the simultaneous ground-state (GS) and excited-state (ES) lasing quantum dot lasers are theoretically investigated. Relaxation oscillations of ‘0 → 1’ and ‘1 → 0’ in the GS lasing region (Region I), the transition region from GS lasing to two-state lasing (Region II) and the two-state lasing region (Region III) are compared and analyzed. It is found that the overshooting power and settling time in both Regions I and III decrease as the bias current increases. However, there exist abnormal behaviors of the overshooting power and settling time in Region II owing to the occurrence of ES lasing, which lead to fuzzy eye diagrams of the GS and ES lasing. Moreover, the ES lasing in Region III possesses much better eye diagrams because of its shorter settling time and smaller overshooting power over the GS lasing in Region I
1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance
Aiming to realize high-speed optical transmitters for isolator-free telecommunication systems, 1.3 μm p-modulation doped InGaAs/GaAs quantum dot (QD) lasers with a 400 μm long cavity have been reported. Compared with the un-doped QD laser as a reference, the p-doped QD laser emits at ground state, with an ultra-low threshold current and a high maximum output power. The p-doped QD laser also shows enhanced dynamic characteristics, with a 10 Gb/s large-signal direct modulation rate and a 7.8 GHz 3dB-bandwidth. In addition, the p-doped QD laser exhibits a strong coherent optical feedback resistance, which might be beyond −9 dB